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1

VECTOR SPACES

Recall the picture of a vector as a directed line segment ~ with its direction
indicated by an arrow attached to one end. Focus on the collection of all vectors
in the plane that start at a fixed origin O but can point in any direction and have
any length. Figure 1.1 illustrates two simple operations that can be performed
on these vectors. We could alter the length and/or orientation of any given
vector OP by multiplying it by a factor k&, which will produce a new vector O
lying in the same line (the figure illustrates the case k < —1). Alternatively, we
could add two vectors together using the parallelogram law, obtaining a third
vector OC = OA 4 OB. In either case, the resulting vector once again points
out from the origin. Thus, the set of all vectors at the origin is ‘closed” under
multiplication by a factor and under vector addition. These two closure properties
are characteristic of a set that forms a vector space.

A vector space can be instantiated in myriad ways, not just geometrically in
terms of vectors pointing in different directions in space subject to expansion and
addition via the parallelogram law. In fact, a vector space need not instantiate
any of the other familiar structure possessed by spatial vectors, such as the fact
that there is a well-defined angle between any two of them or that each has a
precisely defined length. We leave investigation of such additional structure until
the next chapter.

1.1 Definition

Formally, a real vector space or vector space over the real numbers R,
consists of aset V of objects |v), |w), ... called vectors, a mapping + that assigns
to any two vectors |v) and |w) a third vector |v) 4 |w), called their sum, and a
mapping x that assigns to any given vector |v) and real number r another vector
r X |v), written r|v), which is the vector that results from multiplying |v) by r.
In addition, these sum and product operations on vectors are required to satisfy
certain properties.
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Fia. 1.1. Vector space operations

The sum of two vectors must be commutative and associative. There must
be an identity vector, called the zero vector, |0), with the property that for any
[vy € V, |v) 4+ ]0) = |v) (from which it follows that the zero vector is unique).
And every vector |v) must have an inverse, which is written —|v), satisfying
[v) + (—|v)) = |0} (from which it follows that inverses are unique). Subtraction
is then defined by |v) — |w) = [v)y 4+ (—|w)).

The product of a vector by a real number must possess the following proper-
ties (for all »,#' € R and |v), [v') € V):

Lv) = [v), (1.1)
(r+7")|v) = rv) + r'|v), (1.2)
r([v) + V) = rlv) +r[v), (1.3)

r(r'|v)) = (rr')|v). (1.4)
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Notice that there is never a need for a notational distinction between real number
addition and vector addition because the addition mapping at issue i1s always
clear from the nature of the summands. Thus in (1.2) we have real numbers on
the left and vectors on the right, avoiding any possibility of confusion. For the
same reason, no special notation is needed to distinguish between the product of
two real numbers and the product of a vector by a real number. Indeed, for both
products we have done the usual thing and suppressed the x sign (cf. (1.4)).

Replacing ‘real’ everywhere above by ‘complex’, we obtain the definition of
a complex vector space, or vector space over the complex numbers C'.
Often it will not be important whether we are dealing with a real or complex
vector space, in which case we shall refer generically to the set over which the
vector space is defined as a set of ‘numbers’ and denote it by the symbol K (with
elements &, k', etc.). Indeed, we shall often just refer to a vector space V, leaving
out reference to K altogether.

The following are immediate consequences of the definition of a vector space
(for arbitrary k € K and |v) € V):

0lv) = |0), (1.5)

k|0) = |0), (1.6)

(=k)[v) = k(=]v)) = —(k|v)), (1.7)
klv) =10) = k=0or |v) =]0). (1.8)

For example, (1.5) is proved as follows:
010) = 0Je) + 0le) — 0]o) = (0+0)[u) — 0]} = 0) — Oy = o). (1.9)
We leave the proofs of (1.6)—(1.8) to the reader.

1.2 Examples

We start with a simple but abstract example. Let S be any set. Take the set of
vectors to be the set of all number-valued functions on S with finite support,
1.e., all those functions that take nonzero values on at most finitely many elements
of S. Defining the sum of two such functions f and f’ to be the (finite support)
function with action (for all s € S)

(f+1)(s) = F(s) + f'(5) (1.10)
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and kf to be the (finite support) function with action (for all k¥ € K and s € S)
(kf)(s) = k(f(5)), (1.11)

all the necessary properties of a vector space are satisfied. This construction 1is
known as the free vector space on the set 5.

Now take S to be the set {1,...,n}. Evidently the free vector space on this
set consists of all possible n-tuples of numbers. Writing each n-tuple as a 1 x n
column matrix, (1.10) reduces to the standard matrix addition rule

k1 K ki + &y
S I I : (1.12)
ky, k! kn + K,

~

and (1.11) reduces to the standard rule for multiplying a matrix by a number

ky kky
o= ¢ |- (1.13)
ko kk,,

We shall call this the vector space of column matrices and denote 1t by £7. But
when we need to focus on the case KX = R or K = (', we shall follow standard
notation and denote ¢* as R” or C™. R? is none other than the space of vectors
in the plane with which we began the previous section. Associating with each
vector the coordinates of its tip relative to the origin and some fixed coordinate
axes, we can write the vector’s coordinates as a 1 x 2 column matrix. (1.12) is
then equivalent to the parallelogram addition law and (1.13) to changing the
length of the vector by a factor k (cf. the coordinates in figure 1.1).

Next, take S to be the set of all natural numbers N. The free vector space
in this case, which we denote by £V, is the set of all column matrices with a
countably infinite number of entries but only finitely many of them nonzero. Of
course there is nothing stopping us from dropping this finite support requirement
and considering the set of all countably infinite column matrices endowed with
the infinite analogues of the vector space operations in (1.12) and (1.13). We
shall denote that space by £.

1.3 Subspaces and Spans

Let V be any vector space and W be any nonempty subset of V. W is called a
subspace of V if, upon restricting the operations 4+ and x so that they act only
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upon elements of W, it is a vector space in its own right. Equivalently, W is a
subspace exactly when (for any k, &' € K)

|w), [w')y € W = klw) + K'|w') € W; (1.14)

for all that is needed for W to be a subspace of V is that W be closed under +
and x and then these operations will automatically possess the necessary vector
space properties (since they are merely restrictions to W of the vector space
operations in V). Note that since W is nonempty, this equivalent definition of
subspacehood entails that |0) € T. Indeed, a trivial example of a subspace is
the zero subspace consisting of just the single vector {0}. (To avoid the inelegant
notation ‘{|0)}’, we shall always drop vector brackets inside set brackets when
it is clear that the elements of the set are vectors.) Less trivial examples of
subspaces are lines—or ‘rays’—and planes through the origin in R?. Also, £V is
a subspace of £; however neither space contains £ as a subspace.

As the reader may easily verify, any intersection of subspaces of V is also a
subspace of V' (whereas the union of two subspaces is not a subspace, unless of
course one is contained in the other). So we can define the subspace generated
by a subset S C V to be the intersection of all the subspaces of V' that contain
S, which is evidently the smallest subspace of V containing S. Thus, in R, any
two distinct lines through the origin generate a plane, and a plane together with
any vector not contained in the plane generate the whole space.

A vector |v) € V is said to be a linear combination of elements in a subset
S C V if it can be expanded as

v) = stly (1.15)

in terms of a finite subset {s;}?_; C S with a finite set of numbers {k;}7_, as
expansion coefficients. (Note that one considers only finite sums. Later on we
shall need infinite vector sums, but such sums cannot be defined until our vector
spaces are taken to possess some additional ‘topological’ structure.) The span of
aset S C V is the set of all vectors in V' that are linear combinations of elements
in S. Thus, the span of S is just another term for the subspace S generates. We
shall denote the span of the union of two subspaces U and W by U 4+ W, because
it is just the set of all vectors in V' that can be written as a sum of a vector from
U and a vector from W.
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1.4 The Lattice of Subspaces

The binary operations of intersection N and span + on pairs of subspaces endow
the set of all subspaces of any vector space with the structure of a ‘lattice’.

To see what a lattice is, we first need another definition. A partially ordered
set—or poset—is a set .S on which there is a binary relation <, read ‘less than
or equal to’, that satisfies (for all a,b,¢ € S):

reflexivity: a < a, (1.16)
antisymmetry:a < b, b<a = a=0b, (1.17)
transitivity: a < b, b<c¢c = a<ec. (1.18)

The reason for the term ‘partial’ 1s that we are allowing that certain pairs of
elements in .S may not be ordered with respect to each other. For example, if
we order the set of all subsets of any given set T' by defining (for any A, B CT')
A < B just in case A C B, then this ordering—which is called ordering the
subsets of T by inclusion—is necessarily partial, because for disjoint or partly
overlapping subsets of 7', neither is contained in the other. On the other hand,
the set of real numbers with < given its usual meaning is a poset that is totally
ordered.

A lattice £ is simply a poset in which each pair of elements a,b € £ possess
both a join and a meet. The join (or least upper bound) of ¢ and b, written
a Vb, 1s the least element in £ greater than or equal to both @ and b, and the
meet (or greatest lower bound) of @ and b, written a A b, is the greatest element
less than or equal to both a and b. Not all posets need be lattices (try to think
of an example of one that is not), but when a meet or join of two elements does
exist, it must be unique (by a simple argument using antisymmetry), rendering
unambiguous the denotations ‘a V b’ and ‘a A b’. Returning, then, to the set of
all subspaces of a vector space, order them by inclusion. Because U + W is the
smallest subspace containing both U and W, U + W is the least upper bound
of U and W. And since the intersection of U and W is the largest subspace
contained in them both, U N W is their greatest lower bound. So the poset of
subspaces of a vector space V', ordered by inclusion, is indeed a lattice, call 1t
L(V), with V given by + and A by N.

L(V) has some additional properties that not all lattices need have. It has
a (necessarily unique) maximum element 1 and a (necessarily unique) min-
imum element 0, so, for alla € £, 0 < a < 1. In £(V), 1 is the whole space
V and 0 the zero subspace. £(V) is also complete, meaning that every subset
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of £(V') has both a join and a meet, because the span or intersection of an ar-
bitrary collection of subspaces is also a subspace. Finally, £(V) is an atomic
lattice, meaning that every nonzero element in the lattice contains a minimal
nonzero element. Such an element is called an atom of the lattice, and the pre-
cise definition is: @ is an atom in £ if and only if @ # 0 and, forallb € £, b < a =
b=aorb=0.1f U is any nonzero subspace in £(V), then an atom contained in
U is obtained by taking the subspace generated by any nonzero vector contained
inU.

For subspaces of a vector space, intersection does not distribute over sum,
nor does sum distribute over intersection. That is, if A, B and C' are subspaces,
then in general

AN(B4+C)#(ANB)+(ANC), (1.19)

A+(BNC)#£(A+B)Nn(A+C), (1.20)
though equalities will hold for certain choices of the subspaces. (A single choice
for A, B, and C' in R? suffices to establish both inequalities above. What is it7)
When the meet in a lattice fails to distribute over the join (or vice-versa), as in
the case of L£(V), the lattice is called nondistributive.

A sublattice of a lattice £ is any subset of £ that forms a lattice in its own
right (under the partial ordering inherited from £) or, equivalently, any subset
closed under the operations of meet and join. Since the intersection of any collec-
tion of sublattices is itself a sublattice, we can define the sublattice generated
by a subset S C £ to be the intersection of all sublattices of £ that contain
S. And since the generated sublattice is, by definition, the smallest sublattice
containing S, it is what you get when you close S under the meet and join oper-
ations of £. A simple example is the sublattice of £L(R?) generated by any three
distinct rays. This sublattice consists of the rays themselves (automatically), the
plane(s) in which they lie (closing under V), the zero subspace (closing under A),
and the whole space (closing under V again).

1.5 Linear Independence and Bases

A subset 7' C V is called a linearly independent set of vectors if for any finite
set of distinct vectors {#;}7_; C T and any finite set of numbers {k; }7_,,

D kiltiy =10y = k;=0fori=1,...,n. (1.21)
i=1

In particular, 7" cannot be linearly independent if it contains the zero vector,
since 1]/0) = |0). If a subset 7' C V fails to be linearly independent, evidently at
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least one element of 7" must be a linear combination of other elements in 7". In
that case, T' is called linearly dependent.

An example of a linearly independent set is the set of all ‘blip’ functions
{fs}ses in the free vector space over S, which are defined by

1if z = s,

fslz) = {Oifxgés. (1.22)

Another example is the sequence of matrices in #V:

1 1 1 1

bl bl

0 1 1 1
0 0 L I I (1.23)
0 0 0 1

Any vector in the span of a linearly independent set is a unique linear combi-
nation of members of that set. The proof consists of nothing more than assuming
that there is a vector expandable in more than one way, i.e., with different co-
efficients, in terms of vectors in the spanning set, and then deducing from their
linear independence that the different coefficients must, after all, coincide.

A subset B C V is called a basis for V' if B is linearly independent and V' is
in its span. So by the previous paragraph, any vector’s expansion coefficients in a
given basis are unique. Equivalently, B is a basis for V' if and only if it is linearly
independent and not a proper subset of any other linearly independent subset
of V', i.e., if B is a maximally independent subset of V. For if U were not
maximally independent, there would be a vector not linearly dependent upon the
vectors in B, so that B could not possibly span V. On the other hand, assuming
B is maximally independent, there can be no vectors in V' outside B’s span; for
if there were such a vector |v), B U {v} would form a linearly independent set
properly containing B.

In R3 any three noncoplanar vectors form a basis. The blip functions on a
set span the free vector space over it, and therefore constitute a basis. Finally,
the matrices in (1.23) are a basis for ¢~ (how do they span it?) but not for (.
Indeed, no set of vectors drawn entirely from the subspace £V of £ could possibly
form a basis for the latter, because no column matrix without finite support can
be written as a finite linear combination of matrices with finite support.

Every vector space has a basis (excluding, of course, the zero vector space con-
sisting of {0} alone). The argument goes as follows. Start with a single (nonzero)
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vector |v) € V, which trivially forms a linearly independent set on its own. If
there is a vector in V, say |w), not in the span of {v}, add it to that set to
produce a new linearly independent set {v,w}. (And if there is no such |w),
{v} must already be a basis for V.) If {v, w} still fails to span V, add to that
set another vector not in its span so that the augmented set is again linearly
independent. Continue adding vectors from V' into the set in this way until you
finally get a maximally independent set, i.e., a basis for V.

But what if infinitely many vectors have to be added before a basis for V' is
reached (if ever)? In that case, the argument must employ Zorn’s lemma. This
‘lemma’ (which would be better described as an axiom, since it can be neither
proved nor disproved) states that: if every totally ordered subset of a poset is
bounded above, then the poset has a (not necessarily unique) maximal element.
Here, a subset A of a poset S is said to be bounded above if there is an element
s € S such that a < s for every a € A, and an element s € S is called a maximal
element if, for any s’ € S, s < s’ = s = s’. We can now finish the argument of
the previous paragraph in the infinite case as follows.

Consider the poset L of all linearly independent subsets of V', ordered by
inclusion. (Note that L is not the poset L£(V), whose elements are subspaces.)
If it can be shown that L satisfies the hypothesis of Zorn’s lemma, we can use
that lemma to conclude that V' contains a maximally independent subset. So let
{Sx}rea be any totally ordered subset of L parameterized by some index set A;
so, whenever A < X, we have S, C Sy, with each S a set of linearly independent
vectors in V. Then the set UAeA S must also be linearly independent. For any
(finite) linear dependency could only occur if it occurred within one of the sets
Sx, which are linearly independent. Thus we see that [J,c, Sx € L. And since
this union contains each Sy, it bounds the collection {5 }aea from above so that
Zorn’s lemma indeed applies to L.

1.6 Dimension

The most important characteristic of a vector space is its dimension. In order to
define dimension, we first need assurance that all bases of a vector space have
the same ‘cardinality’. We start with the simplest case when all the bases of
the vector space are finite and show that they must have the same number of
elements.

Suppose W = {w1,...,wn} and U = {uy,...,u,} are two bases for V. We
need to show that m = n. Because U spans V', adding the first vector in W to U
yields a new sequence of vectors {w1,u1, ..., u,} that still span V' but must now
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be linearly dependent. This means that there must be at least one vector in this
sequence that is a linear combination of the vectors that precede it. That vector
cannot be |w1), so it must be some vector from the set U, say |u;). Since |w;) is
a linear combination of other vectors in the sequence, it may be deleted so that
the remaining sequence {wy, w1, ..., Uj—1,Ujy1,..., Uy} continues to span V.
Next, add the second vector in W to the beginning of the previous sequence
to obtain
{wy, wa, w1, . Uim 1, Wi 1, ooy Up | (1.24)

which (again) still spans V' but must be linearly dependent. So there is (again)
a vector in this sequence that is a linear combination of preceding vectors. That
vector (still) cannot be |wy), but neither can it be |ws) because W is linearly
independent. So some |u;) is a linear combination of preceding vectors in the
sequence, and we are again free to delete it so that the remaining sequence

{wr, W, U, oo Uim 1, Uity e oy U1, Ugg L, - - -y Un ) (1.25)

continues to span V.

Continue by repeating this argument, at each stage adding a vector from W
to the beginning of the sequence and deleting a vector in U from the end. If
m > n, then n iterations of the argument will eventually yield the conclusion
that the proper subset {w1,...,w,} of W spans V, which contradicts the lin-
ear independence of W. Interchanging the roles played by the sets U and W
throughout the argument, n > m implies a contradiction with the fact that U is
linearly independent. Therefore, the only possibility left is n = m.

To establish the same result for vector spaces with infinite bases, we need
to recall a few facts about mappings. A mapping ¢ : S — T from one set S to
another T associates with any s € S a unique element ¢(s) € 7. The mapping
¢ is called one-to-one if ¢(s) = p(s') = s = ¢ (for all s,s' € S) and onto
if for any ¢t € T there is an s € S such that ¢(s) = t. If ¢ is one-to-one and
onto, it is called an isomorphism of sets. If ¢ : S — T is one-to-one, then
it has an inverse mapping ¢! : T — S which maps t € T to the unique
s € S such that ¢(s) =t. If ¢ : S = T and ¥ : T — 7 are two mappings,
then their composition, ? o ¢ : S — 7 is the mapping from S to Z given by
(Do p)(s) = V(p(s)) (for all s € S). For ¢ : S — T an isomorphism, evidently
@ 0@~ ! is the identity mapping on 7" and ¢! o ¢ the identity on S.

Two sets S and T" are said to have the same cardinality, written kg = k7,
if they are isomorphic, i.e., if there is an isomorphism between them. If S is
merely isomorphic to a subset of 7’| then the cardinality of S is defined to be less
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than or equal to the cardinality of 7' and we write ks < k. It is immediate that
< 1s reflexive and transitive. That < is antisymmetricis the content of the famous
Schroeder-Bernstein theorem (Devlin 1979, Theorem 6.3). Hence, cardinalities
form a poset.

Now return to the problem of establishing that, for any two bases U and W of
a vector space, ky = k. We can suppose that both ky and ky are infinite; for
if, say, Ky were finite, then since ky is infinite we could again run through our
earlier ‘replacement argument’ (cf. (1.24) and (1.25)) and, after a finite number
of iterations, ‘use up’ the basis vectors in U, getting a contradiction with the
linear independence of W. Supposing, then, that both xy and ky are infinite, 1t
is enough to show ky < Kk ; for by switching the roles of U and W throughout
the argument, we get ki < kg, and hence Ky = Ky .

Consider an arbitrary vector |w) € W. Because U is a basis, |w) is in the span
of some finite subset of U, call it Fj,). Furthermore, every |u) € U is contained
in at least one of the sets Fj, for some |w) € W. For if some |u) € U were not,
then because W is a basis and |u) is in its span, |u) would have to be in the span
of a subset Fj,) of U that (by hypothesis) fails to include [u) itself, contradicting
the linear independence of U. So we have that every |w) € W is associated with
a finite subset Fj,) of U in such a way that

U= |J Fu). (1.26)
|lw)ew

But the infinite cardinality of this union, and thus U, is always less than or equal
to kw . This fact is easily seen if W is countably infinite, because a countable
union of finite sets is again countable. If W has higher cardinality, appeal has to
be made to the fact that, for any infinite cardinal %, a union of at most x sets
of cardinality at most « has cardinality at most x (Devlin 1979, Corollary 7.8).

The common cardinality of all the bases of a vector space V' is called the
dimension of V' (taking the zero vector space to have dimension zero). Since
the blip functions in the free vector space over a set S are a basis, and there are
as many blip functions as there are elements of .S, vector spaces of any dimension
exist. Moreover, in the next section we shall see that once the dimension is fixed,
the vector space itself is fixed ‘up to isomorphism’. So there 1s a sense in which
once one has understood free vector spaces, one has understood them all.

The superscripts that occur in R”, C™, and £” are there to indicate that these
spaces have finite dimension n, and we shall indicate a generic finite-dimensional
space by V™. The superscript in £~ means it has countably infinite dimension
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(recall N = the natural numbers). By contrast, we have omitted any superscript
in ‘¢’ because its dimension is uncountable, a fact that may be seen by the
following argument.

Recall that ¢ is the vector space of all number-valued functions on N. Also
recall that the real numbers in the interval [0, 1] are uncountable, and that each
7 € [0, 1] has a unique decimal expansion of the form .i1i3i5 - - - where each digit i,
is a whole number. With reference to r’s decimal expansion, define the following
infinite sequence of natural numbers,

S, = {21372 pin}o (1.27)

n=1»
where p, is the nth prime number. Observe that
r#r = ks.ns,, < 0. (1.28)
(Why?) Next, for each r € [0, 1] define an element of £ by

_[1lifnel,,
gr(n) = {o ifngs,. (1.29)

Then the uncountable set {g, },¢[0,1] is linearly independent, and hence ¢ cannot
have countable dimension. For suppose that some finite number of these functions
satisfies k1g,, + - -~+kmgr,, = 0. For an arbitrary index j, we need to show k; = 0.
It must be the case that

Sp; € SpU---US,,_ US,

i1

Tm*

(1.30)
For if not, then evidently

Spy = (Spy, NS, )U---U(Sp,_, NSy, ) U(S

i1

NSy, )U---U(Sy, NSy,); (1.31)

and, since .S, is infinite, at least one of the S, NS, (I # j) would also have to
be infinite, violating (1.28). Because of (1.30), we may choose an n € S,, such
that n € S, U---US,,_, US,., U---US, ., and thus for that choice we obtain

0= klgrl (n) + -4 k’jgrj(n) + -4 kmgrm(n) = k’j -1 = k’j (132)

as required.
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1.7 Linear Mappings and Isomorphism

Let V and W both be vector spaces over the same set of numbers K. To avoid
excess brackets, we shall write the result of applying the mapping ¢ : V. — W to
a vector |v) € V as p|v) (rather than ‘o(|v))’). The mapping ¢ is called a linear
mapping if (for any |v), [v') € V and k, k' € K)

p(klv) + K0")) = kelv) + K elv'), (1.33)

where the vector space operations on the left are performed in V' and on the
right in W. Since linear mappings preserve sums of vectors and products of
vectors by numbers, they preserve all the relevant structure of a vector space.
(We shall encounter similar ‘structure-preserving’ mappings when we introduce
other mathematical structures later.) Note that if ¢ is linear, ¢|0) = |0), because
l0) = ¢(|v) — |v)) = ¢lv) — plv) = |0). We leave the reader to check that the
composition of two linear mappings is again linear, and that if ¢ is linear, so is
o~ ! (when it exists).

Let ¢ : S — T be a mapping between sets. Recall that for any A C S| the set

d(A) = {é(s) €T :s€ A} (1.34)
is called the image of A by ¢, and for any B C 7', the set

L s 5 ¢(s) € B} (1.35)

¢~!(B)
is called the inverse image of B by ¢. (Note that using the notation ‘¢=1" in
this way by no means implies that ¢ is invertible. As an exercise in the use of
this notation, the reader might like to show that ¢ is one-to-one if and only if
¢71(#(A)) = A for all A C S, and onto if and only if ¢(¢~1(B)) = B for all
B C T.) The image of a subspace U C V by a linear mapping ¢ : V = W, i.e.,
(U), is again a subspace. Clearly, [0) € ¢(U) (in virtue of ¢|0) = |0)). And if
|w), |w"y € W, then ¢|v) = |w) and ¢|v') = |[w') (for some |v),|v") € U). But we
know that k|v) + &'|v') € U, thus

o(k|v) + K [v")) = k|lw) + k' |w') € o(U). (1.36)

Similarly, ¢=1(U) is a subspace whenever U C W is a subspace.
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The action of a linear mapping ¢ : V — W is completely specified by its
action on a basis B for V, because the action of ¢ on an arbitrary |v) € V,
where |v) = k1]b1) 4+ - -+ knlbn) and {b;}7_; C B, must then be

plv) = Zki80|bi> (1.37)

by linearity. Note, also, that the set of all linear mappings from one fixed vector
space V to another W forms a vector space in its own right, when we define the
linear combination k¢ + k'’ of the linear mappings ¢ : V. — Wand ¢’ : V — W
to be the (linear) mapping with action (for all k, &’ € K and |v) € V)

(ko + k'¢')|v) = kol|v) + k' |v). (1.38)

The mapping ¢ : V' — W is an isomorphism of vector spaces if it is an
isomorphism of sets and is linear. For example, £7, while not a subspace of £V,
is isomorphic to one (under the obvious isomorphism). Not only do isomorphic
vector spaces have the same cardinality—and thus are structurally identical as
sets—but operations involving vectors in one of the spaces can be mimicked by
operations involving the corresponding vectors (under the isomorphism) in the
other space, making them structurally equivalent as vector spaces as well.

The chief result that tidies up the subject is that two vector spaces V and
W are isomorphic, written V = W, if and only if they have the same dimension.

To see why, suppose first that V and W have the same dimension. Let B
be a basis in V| L a basis in W, and pick an isomorphism of sets ¥ : B — L.
Define the linear mapping ¢ : V. — W by ¢|b) = |b) for all [b) € B (which,
recall, defines it completely). Tt is then a simple matter to show that this ¢ is
one-to-one and onto. For ‘one-to-one’ use the fact that the expansion coefficients
of any vector in W in terms of the basis L are unique, and for ‘onto’ use the fact
that L spans W.

Conversely, suppose V =2 W and pick an isomorphism of vector spaces ¢ :
V — W. It follows that ¢’s action on elements in any basis B for V' will produce
a basis L = {¢]b) : b € B} for W. To prove that L is linearly independent, note
that for any finite subset of I we have

D kielbs) = 10) = w3 kiles) = 10) (1.39)
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= S kylty) = [0) (1.40)

= k;j=0forj=1ton, (1.41)

using the linearity of ¢, the fact that ¢ is one-to-one (remembering that ¢|0) =
|0}), and the linear independence of B. An equally elementary argument estab-
lishes that L spans W. Therefore, since ¢ is an isomorphism mapping basis B
in V to basis L in W, V and W have the same dimension.

A consequence of this result is that if B is a basis for V| then since the free
vector space over the set B has the same dimension as V', they are isomorphic.
So we see that nothing more subtle goes on in an arbitrary vector space V than
what goes on in a free vector space. In particular, having mastered ¢”"—and,
in the real case, the geometric interpretation of R"—one has understood all
n-dimensional vector spaces.

It is often useful for performing operations on vectors to use a particular
isomorphism to translate into the language of matrices in £” from an arbitrary
n-dimensional vector space V”. The standard way of doing so is to pick a basis
B for V" and consider the mapping ¢p that sends |v) € V™ to the column
matrix in £* consisting of |v)’s (unique) expansion coefficients in the basis B.
This pp is indeed an isomorphism and, for any vector in V', delivers its matrix
representation relative to the basis B. So if we have any vector equation in
V7, all its vectors can be replaced by their matrix representations relative to
a common basis, leaving any expansion coefficients in the equation unchanged.
The the equation can then be manipulated according to the matrix rules that
define the vector operations in £*. The same points hold for a vector space with
countable dimension and the matrix representations of its vectors in #V.

1.8 Operators and Algebras

A linear operator—or just operator—on a vector space V is a linear mapping
F:V =V from V to itself. The image of V' by F, i.e., the subspace F(V),
is usually called the range of F. The vector space of all operators on a fixed
vector space V has a structure not shared by the vector space of linear mappings
between different vector spaces. Because the composition, or product, of two
operators F' and G is automatically another, F G, with action FG|v) = F(G|v))
(for all |v) € V), the operators on V' form an ‘algebra’.
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An (associative) algebra A over K consists of a vector space over K with
an additional product mapping that assigns to any two vectors X, Y € A a third
vector XY € A, satisfying (for all k € K and XY, 7 € A):

bilinearity: X(Y + kZ) = XY + kXZ, (Y +k2)X =YX + kZX, (1.42)
associativity: X(Y7) = (XY)Z. (1.43)

One says ‘real algebra A’ or ‘complex algebra A’ according to whether K = R
or K = (. For the algebra of operators on a vector space V, as opposed to
an abstract algebra, we write A(V). Of course A(V) will be real or complex
according to whether V' is real or complex.

Elements of A(£™) are given by n x n matrices of numbers, which map column
matrices in £? to column matrices in £ according to the following transparently
linear multiplication rule:

ki1 ... kin I my
- (1.44)
Fut - ko )\ -
with .
mi = kiply. (1.45)
p=1

The sum of two operators in A(£7) is then just the sum of their n x n matrices,
entry for entry, and the product of an operator by a number is the matrix ob-
tained by multiplying each entry of the n x n matrix by that number. Of course,
these operations are analogous to the operations that can be performed on the
column matrices in £* itself.

From the product rule in (1.44) and (1.45), it is straightforwardly deduced
that the product of two operators in A(£") is determined by the following more
general matrix multiplication rule:

kll PN kln 111 . l1‘7 . lln mi1 . . .M
kil S kin Lo e = oMy (1.46)

knl PN knn lnl . an . lnn mn1 . . . Mpn
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with .
mi; = Z k’iplpj. (147)
p=1

Notice that, regarded just as a vector space, the algebra A(¢") has dimension n?,

since a basis is given by the n? matrices with a 1 in a single slot of the matrix
and 0 elsewhere. In fact, whatever the dimension & of V', the dimension of A(V)
is always k2. (Why?) Since k? = x whenever & is an infinite cardinal (Devlin
1979, Theorem 7.5), the vector spaces A(V') and V are isomorphic whenever the
latter has infinite dimension.

It is easy to conjure up matrices whose product depends on the order in which
they are multiplied. Take for example

(83) and ((1)_01) (1.48)

in A(R?) (or A(C?)). For two operators, or more generally two elements X and
Y in an abstract algebra, it is often convenient to invoke their commutator and
anti-commutator, defined by:

X, V] Xy —vXx, (1.49)

X V]: ¥ XY 47X, (1.50)

If the commutator of any two elements in an algebra is 0, the zero vector of the

algebra, it is called commutative or abelian. Generalizing from the example

in (1.48), it is easy to convince oneself that A(V) will be commutative if and
only if the dimension of V is trivial (i.e., 1 or 0).

There are two further important algebraic structures that the operators on

a vector space instantiate in virtue of forming an associative algebra. A Lie

algebra A over K is a vector space over K with a product, denoted by e, that is

not necessarily associative, but is still bilinear and satisfies (for all X, Y, Z € A):

anti-symmetry: X ¢Y = —Y ¢ X| (1.51)

Jacobi identity: X e (Yo Z)+ 7o (X oY)+ YV e (Z70X)=0. (1.52)

The elements of an associative algebra are readily verified to form a Lie algebra
if we define X oY to be [X,Y]. Note that anti-symmetry and the Jacobi identity
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are trivial when the associative algebra is commutative, and in that case the Lie
algebra is associative. A Jordan algebra A over K is a vector space over K
with a product, denoted by o, that is (again) not necessarily associative, but is
still bilinear and satisfies (for all X,V € A):

symmetry: X oY =Y o X, (1.53)

Jordan identity: (X o X)o (Y oX)=((Xo0X)oY)o X. (1.54)

Defining X oY to be [X,Y]4, the elements of an associative algebra form a
Jordon algebra (and, again, symmetry and the Jordan identity are trivial when
the associative algebra is commutative, in which case the Jordan algebra is itself
associative). When we refer simply to an algebra ‘A’, or (concretely) to ‘A(V)’,
it should always be understood that associative algebra is meant; otherwise, we
shall say explicitly ‘Lie algebra A’, ‘Jordan algebra A(V)’, etc.

A subalgebra of an algebra A is a subset of A forming an algebra in its
own right under the operations it inherits from A. Equivalently, a subset of A is
a subalgebra when it 1s a subspace closed under products. A trivial example is
the commutative subalgebra of A(V) consisting of all multiples of the identity
operator I. (It is not part of the definition of an algebra that it has an identity,
but the operator algebras we shall consider typically do.) Less trivially, the set of
all operators that commute with a given operator forms a subalgebra. (But must
it be abelian?) On the other hand, the set of all operators on R® that act by
rotating vectors about a common fixed axis does not form an algebra. (Why?)

The intersection of subalgebras is again a subalgebra, so we can define the
subalgebra generated by a set of elements in an algebra in the usual way, viz.,
as the intersection of all subalgebras containing the set. A simple example is
the commutative subalgebra generated by a single operator F' and the identity
operator I, which is the set of all polynomials in the operator F':

b F™ A ey F™ 4 by FY 4 ko (1.55)

with coefficients drawn from K (F™ denoting F’s composition with itself m
times).

A mapping ¢ : A — B from one algebra to another is called a homomor-
phism if it is a linear mapping of vector spaces and, in addition, preserves
products, that is (for all X, Y € A)

P(XY) = p(X)(Y). (1.56)
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It is easy to see that the image (and inverse image) of any subalgebra by 1 is
again a subalgebra. ¢ is an isomorphism of algebras, or algebraic isomor-
phism, if it is a one-to-one, onto homomorphism. Whenever algebras A and 5
are isomorphic, we shall again write .4 = B and qualify this statement with ‘as
vector spaces’ if we only wish to assert that A and B are vector space isomor-
phic. It turns out that non-isomorphic algebras can have the same dimension,
but isomorphic algebras obviously cannot have different dimension. Apart from
examples, every concept in this and the previous two paragraphs applies equally
well to Lie and Jordan algebras.

As one might expect from the fact that any n-dimensional vector space V"
is isomorphic to £” (both real or both complex), A(V") = A(£"). To see the iso-
morphism explicitly, fix a basis B = {v;}_; for V™ and consider the mapping ¥
that sends F' € A(V™) to the n x n matrix with columns given, respectively, by
the (unique) expansion coefficients in the basis B of the vectors Flv1), ..., Fluy,).
This ¢ g is an isomorphism of algebras that delivers the matrix representa-
tion of the operator F relative to the basis B. Thus any operator equation
in A(V"™) can be replaced by one involving matrices in A(¢") and manipulated
according to the product rule for n x n matrices given in (1.46) and (1.47).
Furthermore, matrix representations of vectors in V" and operators on V" can
readily be shown to ‘mesh’ relative to a fixed basis B for V", in the sense that

(for any |v) € V*, F € A(V"))

UB(F)eplv) = ¢p(F|v)), (1.57)

where ¢p maps a vector to its matrix representation in ¢” relative to B. This
guarantees that any equations involving operators acting on vectors in V" can
always be replaced by their matrix counterparts in some convenient basis and
manipulated according to the matrix rule given in (1.44) and (1.45). We shall
exploit this possibility in the next section.

1.9 Eigenvectors and Eigenvalues

Let F be an operator on V. A nonzero vector |v) € V for which F|v) = k|v) for
some k € K is called an eigenvector of F', with k the corresponding eigenvalue.
For example, in the free vector space over R, the operator that maps a function
f(z) on the real line to xf(x) has as eigenvectors any blip function f. (r € R),
with 7 the corresponding eigenvalue.

The eigenvectors of an operator F' that correspond to distinct eigenvalues
must be linearly independent. For suppose, for reductio ad absurdem, that the
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eigenvectors |v1), ..., |vm ), with corresponding distinct eigenvalues [y, ..., Iy, are
a linearly dependent set. Then there must be a smallest index value j < m such
that |v;) is a linear combination of the eigenvectors with index less than j, i.e.,

o) = > kilv). (1.58)

1<j<m

Acting with F on both sides of (1.58), we obtain

Lilyy = > kililvi). (1.59)

1<j<m

Multiplying (1.58) by {; and equating the result with (1.59), the linear indepen-
dence of the vectors prior to |v;) in the sequence entails {;k; = k;l; for all ¢ < j.
But the eigenvalue [; differs from all the eigenvalues {/;}i<;, so k; = 0 for all
i < j. Inserting this result back into (1.58), we see that the eigenvector |v;) must
be zero—which is absurd.

The eigenvectors of an operator that correspond to a fixed eigenvalue form a
subspace, as a consequence of the linearity of the operator, called an eigenspace.
The multiplicity of an eigenvalue is defined to be the dimension of its corre-
sponding eigenspace. Operators that have eigenvalues with a multiplicity greater
than 1 (which must have linearly independent eigenvectors for the same eigen-
value) are called degenerate. Finally, if there is a basis B of V" consisting of
eigenvectors of F' possibly with the same eigenvalues, then the matrix represen-
tation of F' relative to B will have F’s eigenvalues lying along its main diagonal
(i.e., the one from top-left to bottom-right) and 0 off-diagonal terms. It often
simplifies matrix computations to work in a basis that ‘diagonalizes’ a given
operator like this.

Nothing said so far guarantees that any particular operator even has eigen-
vectors and eigenvalues. Certainly not every operator on an infinite-dimensional
space has an eigenvector. Just consider the transparently linear ‘shift’ operator
F on (N with action (for all ky, ks, ... € K):

k1 0
ko k1
F: k’g — k’z . (160)
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Clearly no vector can be an eigenvector for this F', since for any %,

ky 0 ky
s ky s
Flhs | =]k | =k|ks], (1.61)

and the second equality can hold only if all of the k;’s are zero, leaving the zero
vector as the only possible candidate for an eigenvector.

For the case of a finite-dimensional vector space V7", the situation is quite
different. Every operator on V" has an eigenvector if and only if either V" is
complex or n is odd. The last stipulation is more intuitive than it looks. For
example, the operator on R? that rotates every vector about the origin by some
fixed angle has no eigenvectors, because the only vector that is even a candidate
for an eigenvector (viz., a vector whose direction fails to change under the ro-
tation) is the zero vector. By contrast, any rotation in R® will necessarily leave
invariant the vectors that lie along the axis of rotation (though it is less obvious
that composing two or more rotations about differing axes—remembering that
the composition of two linear operators is again a linear operator—must always
leave fixed at least one ray after all rotations are complete).

To establish the ‘if and only i1f’ claimed above, consider an arbitrary operator
F on V™. We are asking: Under what conditions does there exist a nonzero vector
|v) and number k such that F'|v) = k|v)? That is, by exploiting the isomorphisms
A(V™) = AL") and V™ = £" we want to know when every matrix equation of

the form (cf. (1.57))

F11 . Fln k’l kl

il (1.62)

has a nonzero column matrix in £ that solves the equation for some number %.
Recalling the rules of matrix multiplication, (1.62) can be rewritten in the
equivalent form (cf. the operator equation (F — kI)|v) = |0))
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F11 —k. . . Fln k’l 0

N kn 0
which is just a fancy way of writing down a system of n linear homogeneous
equations in the n unknowns {k; }7_,. It turns out that a nonzero solution to such
a system of equations exists if and only if the ‘determinant’ of the n xn ‘coefficient
matrix’ for the system in (1.63) is zero (Lipschutz 1968, Theorem 8.4). The details
of how the determinant of a general n x n matrix is defined need not detain us.
All that is important for our purposes is that the determinant of a matrix is a
linear combination of products of the entries of the matrix, where each product is
formed from n entries of the matrix, exactly one of these n coming from each row
of the matrix, and exactly one coming from each column. In particular, the first
term in the determinant of a matrix is always the product of the elements along
its main diagonal, while the last term is the product of the elements along its

other, minor, diagonal multiplied by the coefficient (—1)?(*=1/2 (For example,
in the simplest 2 x 2 case, the determinant of

(i‘ Z) (1.64)

i1s ad — be, and simple algebra reveals that the pair of equations

ar+by=20
cx +dy = 0 (1.65)
has a nonzero solution only if ad = be, i.e., only if its determinant is zero.)

Therefore, the n x n matrix in (1.63) has determinant zero just in case a certain
polynomial of degree n in the unknown variable & (with coefficients that are
functions of the Fj;’s) has a root, which would then have to be an eigenvalue of
F.

That there is always such a root in the case where K = (' follows at once from
the fundamental theorem of algebra (Churchill and Brown 1984, Sec. 42) which
establishes that, regardless of its coefficients, every polynomial of degree n over
the complex numbers has exactly n complex roots (some of which may be the
same). So we arrive at the conclusion that every operator on a finite-dimensional
complex vector space has at least one eigenvector and eigenvalue. As an added
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bonus, we have learned that the maximum number of distinct eigenvalues of such
an operator is limited by the dimension of the space on which it acts.

In the case where K = R, obviously not every polynomial p of degree n over
the real numbers has a real root, e.g., >+ 1 has only the roots +1/—1. However,
every real polynomial p can be factored into real polynomials of degree 1 or 2
(Anderson and Feil 1995, p. 97). Noting that the degree of the product of any
two polynomials is the sum of their degrees, it follows that when n is odd, p will
have the form (ax+b)g (where ¢ has even degree) and, therefore, will always have
at least one root, viz. —b/a. On the other hand, when n is even, it is easy to see
that the operator F' on R" given by the matrix with (—1)”(”_1)/2 in its upper
right-hand corner, 1’s along the rest of its minor diagonal, and 0’s elsewhere, is
such that F —rI has the determinant " + 1 with no real roots. (When n =2, F
is just the operator rotating every vector about the origin by 90°.) Thus, when
V"™ is real and n even, the existence of eigenvectors and values cannot be taken
for granted.

1.10 Linear Functionals

There is another kind of linear mapping that plays just as fundamental a role in
the theory of vector spaces as operators do. A linear functional f on V is a
linear mapping f : V — K. The terminology ‘functional’ derives from the fact
that, if we take V' to be the free vector space over a set, such f’s are, literally,
functions of functions. The vector space of all linear functionals on V is called
the dual of V' and is denoted V*. If V* 2 V| we say V is self-dual.

Finite-dimensional vector spaces are self-dual. To see why, let {b;}7_, be a
basis for V. We can then construct a basis {f,}7, for (V™)*, called the dual
basis of {b;}7_;, where

_ e _Jlifi=,
fz’|bj>—6m - {Oifi;ﬁj. (1'66)
Linear independence of the set {f,;}7_, is proved by
D kif;=0= > kifilbj)=0forallj=1ton (1.67)
i=1 i=1
= kj=0forallj=1ton (1.68)

(abusing notation slightly in the first line by letting ‘0’ denote both the number
0 and the functional mapping all of V' to that number). That {f,}"_, spans
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(V™)™ is verified by noting that the action of an arbitrary linear functional f is
reproduced by the linear combination
n
Y (I (1.69)
i=1
which, by construction, agrees with f in its action on all basis vectors {b; }7;.
Infinite-dimensional spaces fail to be self-dual. For example, the action of a
linear functional on ¢V is completely determined by its action on a countable
basis. So an element of (¢V)* is defined simply by specifying any countable set
of numbers. Mapping each such set of numbers to the column matrix in ¢ that
contains them defines an isomorphism between (£~)* and ¢. But since ¢ fails to

have countable dimension, so does (¢/¥)*, and so it could not be isomorphic to
N

1.11 Direct Sums

There are at least two ways to take a pair of sets S; and Ss and build a larger
one out of them. We can form their disjoint union

S Uy Sa def {{z,n):n=1or2,2 € S,} (1.70)

or we can form their Cartesian product

S1 X Ss déf {(81,82) 151 € 5] and s9 € 52} (171)

Evidently, the cardinality of the disjoint union of two sets is just the sum of
their individual cardinalities, whereas the cardinality of their Cartesian product
is the product of their cardinalities. The analogues of these two constructions
in vector space theory, where the relevant notion of size is basis cardinality, i.e.,
dimension, are the ‘direct sum’ and ‘tensor product’ of two vector spaces.

We begin, in the present section, with the simpler construction of the two.
The direct sum of two vector spaces Vi and V5 over K, denoted Vi @ Vs, is the
vector space (over K) consisting of elements of V) x V2 (whose pairs we write
as (v1,vz) rather than ‘(|vy), |ve))’) endowed with the following natural vector
space operations (for all k € K, |v1), |v]) € V1, and |va), |vh) € Va):

(v1,v2) + (vll’ U/Z) = (v + vll’ v2 + U/Z)’ (1.72)
k’(vl,vz) = (k’vl,k’vz). (173)

Notice how these operations are defined in terms of operations already available
in V7 and V5. Despite drawing its elements from the Cartesian product V; x Vs,
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V1 @ V5 1s in fact analogous to disjoint union, because its dimension is the sum of
the dimensions of its summands. All that needs to be done is to check that for B;
a basis in V; and B2 a basis in V5, the set of all vectors of the form (b1,0) with
|b1) € By, together with the set of all vectors of the form (0, b3) with |b2) € Ba,
constitute a basis for V] ¢ V5.

The direct sum often makes an appearance when considering two subspaces
U and W of a vector space V that satisfy

U+W=V, UnW = {0}. (1.74)

Such subspaces are said to be complementary. Equivalently, U and W are
complementary when every |v) € V is a unique linear combination |v) = |u)+|w)
with |u) € U and |w) € W (uniqueness being enforced by the second condition in
(1.74)). Here, |u) is called the component of |v) lying in U; and, similarly, |w)
is |v)’s component in W. Moreover, to say that U, /W C V' are complementary
is just to say that V=2 U @ W. For if U and W are complementary, then we
may isomorphically map any |v) € V to the ordered pair of its components

(v,w) e U W.

1.12 Tensor Products

Consider, again, two vector spaces V; and V5 over K| their Cartesian product
Vi x Vs, and a third vector space W. A mapping ¢ : Vi x Vo — W is called
bilinear (cf. (1.42)) if it is linear in both arguments; that is, if (for any |v1), |v]) €
V1, |va), |vh) € Vo, and k k' € K)

o(kvy + kv, va) = ke(vr, va) + K @(v], va), (1.75)
o(v1, kv + k'vh) = ke(vi, va) + K @(v1,vh). (1.76)

(Note that, in general, kp(v1,va) # @(kvy, kva).) The pair (W, @), where W is
a vector space and ¢ a bilinear mapping ¢ : V4 x Vo — W, is called a tensor
product of V; and V3 if, whenever (W' ¢') is any other such pair, there is a
unique linear mapping ¥ : W — W' such that ¢ o ¢ = ¢’. This definition is
conveniently summarized by the diagram of figure 1.2. One says such a diagram
‘commutes’ if, by following the arrows along a path through the diagram, and
composing the corresponding mappings, the same mapping is obtained between
fixed endpoints no matter which path between them is traversed. Thus the vector
space W and bilinear mapping ¢ is a tensor product of V; and V5 if, for any 1’
and bilinear ¢’ as shown in figure 1.2, there is a unique linear i such that the
diagram in that figure commutes.
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V1 X V2 L W
¢ (unique)
S0/
W/

Fig. 1.2. Tensor product of two vector spaces

The existence of a tensor product for any two vector spaces Vi and V5 is
readily established. Fix a basis By for Vi, a basis By for V5, and let W =
F(By x B2), the free vector space (over K) on the set By x Bs. Recall that a
basis for [/( By x By) is given by the blip functions f(,, 5,) with (b1, b2) € By x Bs.
Next, consider any |v1) € Vi and |vs) € Vi. These vectors will each be unique
finite linear combinations of basis vectors in their respective spaces

m P
o) = D kilby),  lv2) =D 1185). (1.77)
i=1 j=1

So we may define a mapping ¢ : V) x Vo = F(B; x By) by taking ¢(vy,va) to
be the following linear combination of blip functions on By x Bs, built from the
coefficients that figure in (1.77):

m,p
lor,v0) E N kil f - (1.78)

i,7=1
It is easily checked that ¢ is bilinear. All that remains is to show that (F(By x
Bsy),¢) is a tensor product of Vi and V;. Given another W’ and (bilinear) ¢
as in figure 1.2, clearly a necessary condition for 1 o ¢ = ¢’ is that, for any
basis pair (b1, ba), ¥(fis, b)) = ¥’ (b1, b2). Since the elements of form f, ) are
a basis for W = F(B; x Ba), this fixes the linear mapping ¢ uniquely. It is then
an easy exercise to show, using bilinearity of ¢ and ¢’, that ¢ oy = ¢’ (i.e., that
the action of 1) o ¢ and ¢’ is the same on all elements of V; x V5, not just those

of form (b, b2)).

Next, we observe that tensor products are unique up to isomorphism. For
if (W, ¢) and (W', ¢') are both tensor products of ¥} and Va, then there is
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a unique ¥ such that the diagram in figure 1.2 commutes, i.e., ¥ o ¢ = .
Similarly (interchanging primes and unprimes), there is a unique ¢’ such that
P o’ = . Tt follows that (¢ o) o = ¢, and therefore setting 1t = ¢’ o4) in the
diagram of figure 1.3 makes ¢ commute. Alternatively, it is clear that diagram
1.3 commutes if p is set equal to the identity operator on W. Therefore, by
uniqueness of y, ¢’ o ¢ is the identity on W. A similar argument (by symmetry)
establishes that o1’ is the identity operator on W’ and hence 1 : W — W' is an
isomorphism. It is convenient to call this ¢ the natural isomorphism between
W and W’. For example, if in the previous paragraph’s construction, we had
chosen a different pair of bases B} C Vj and Bj C V4, obtaining another tensor
product (F(Bj x B}),¢’), then the natural isomorphism between F(B; x Bs)
and F(Bj] x BL) would be the isomorphism mapping the blip function basis of
the former into that of the latter.

Vi x Vs L W
4 (unique)
¥
w

Fia. 1.3. Step in the argument for the uniqueness of tensor products

The (unique, up to isomorphism) tensor product of V4 and V; is standardly
denoted by Vi ® V5, the bilinear mapping from V3 x Vs to V4 @ Vo by ®, and the
result of applying the map ® to a pair (v1, v2) is written as |v1) ® |va). (Since ®
is bilinear, and acts on pairs of vectors, it is similar to the product operation in
an algebra, except for one glaring disanalogy. What is it?) Fortunately, it is the
general features of the space V) ® V5 that are important, rather than the specific
details of how it might have been constructed (which is why one need not reflect
any such details in the notation ‘V; ® V2’). We turn next to establishing the most
important of these general features.

Consider subsets S; C Vi, So C Vs, and the set

S = {|81> 03¢ |82> : |81> & Sl, |82> & SZ} g V1 03¢ Vz. (179)
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We claim that if 57 and Sy are each linearly independent, then S will be linearly
independent as well. To see this, note that (by a straightforward application of
Zorn’s lemma) U; is contained in some basis By C Vi, and Us is contained in
some basis By C Va. Thus, it suffices to establish that the set of elements of
form |b1) ® |b2) is linearly independent (because S is contained therein). From
our discussion of the uniqueness of tensor products, we know that the diagram
of figure 1.4 below commutes, and that ¥ is the natural isomorphism. Since
U(fiby b)) = |b1) @ [b2), and the blip functions form a basis for F(B; x Ba),
the elements of form |b1) ® |b2) must form a basis in V; x Va2, and, hence, be
linearly independent. Incidentally, this result makes it clear that the dimension
of V1 ® V5 is indeed the product of the dimensions of V; and V2, in analogy with
the Cartesian product of two sets.

V1 X V2 F(Bl X Bz)
¢ (unique)

Vie Vs

Fiac. 1.4. Argument that {|b1) ®1b2) : |b1) € By, |b2) € Ba} is a basis for V1 ® Vs

Next, if we suppose, instead, that the sets S; and S» span V; and Vs, re-
spectively, then it follows that V3 ® V5 1s itself spanned by S. By the previous
paragraph’s argument, the set of all elements of form |b1) ® |b2) € V1 ® V5 spans
the latter. Thus it suffices to exhibit each such element as a linear combination
of the vectors of form |s1) ® |s2). But since we have by hypothesis

m P
[b1) = D kilsi),  [b2) =D Lilsh), (1.80)
i=1 j=1
bilinearity of ® immediately yields what we require:

P
[b1) © [b2) = Y kilylsh) @ |sh). (1.81)

i,7=1
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A vector |w) € V1 ® V3 is called a product vector, or simple tensor, if there
are vectors |v1) € V1 and |vz) € V7 such that |w) is the tensor product of |v1) and
|va), i.e., |w) = |v1)®|ve). By the argument just given, then, the set of all product
vectors in Vi ® Va span it, though they are (of course) not linearly independent.
As a result, if one 1s interested in defining a linear mapping ¢ : V3 @ Vo = W by
first defining its action on all product vectors and then extending it to the rest of
V1 ® Va by linearity, one must first ensure that the extension will be consistent by
checking that ¢ preserves linear combinations of product vectors that are again
product vectors.

The denotation ‘Vi @V, can be alittle confusing, since it might give the wrong
impression that every element of V; @ V5 is a product vector. Not so (and nowhere
have we required that the mapping @ be onto). A vector in V1 ® V4 that is not a
product vector is called entangled or nonseparable. For example, consider the
tensor product V;? ® Vi of a pair of two-dimensional spaces, with bases {b1, ]}
and {bs, b,}, respectively. Since it is a vector space, ViZ @ Vi is closed under
vector sums and must contain linear combinations like [b1) ® [b2) + |67) ® |b5).
To see that this vector 1s entangled, suppose, to the contrary, that

[b1) @ [ba) + [b1) @ [b5) = |v1) @ [v2). (1.82)
Inserting the expansions |v1) = kq1|b1) + £1]6)) and |ve) = ka|ba) + k5]6%) into the
right-hand side of (1.82), and simplifying (using the bilinearity of ®) yields:

(k= 1)[b1)@[ba) -+ kKb 16) 0 [85)+ K ko) [ba) + (K ks — 1) B, ]B5) = [0y ]0).
(1.83)

But since the vectors
[b1) @ [ba), [b1) @ [b5), [b7) @ [b2), [b) @ [b3), (1.84)

form a basis, there are no values for kq, k], k2, and k) that can solve equation
(1.83). For the same reason, all of the following are entangled:

[b1) @ [b2) + [b1) @ [b), (1.85)
[b1) @ [b2) — [b1) @ [b), (1.86)
[b1) @ [by) + [b1) @ [b2), (1.87)
[b1) @ [b5) — [b1) @ [b2). (1.88)

It is easy to see that these vectors form a basis in V2@ V% given that the vectors
in (1.84) do. Thus the latter represent only the special case of a product basis,
consisting entirely of product vectors.
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The operation of taking the tensor product of two vector spaces may be iter-
ated to produce tensor product spaces with any number of factors, the simplest
case being

(Vi @Vs) ® Vs, (1.89)

However, it does not actually matter where we place the parentheses. For it is
not difficult to see that the space

Vi@ (Vo @ Va) (1.90)

also qualifies as a tensor product of V4 ® V5 and Vs, and that the natural iso-
morphism associates any vector of the form (|v1) ® |v2)) @ |vs) in the first space
above with |v1) ® (Jv2) ® |vz)) in the second. If we always adopt this isomorphism
in cases of iterated tensor products, both tensor products of vector spaces and
of vectors themselves becomes associative, and we are free to drop all paren-
theses from tensor product expressions. Alternatively, we could choose to avoid
the issue of associativity altogether by defining the n-fold tensor product of the
spaces {VJ}?:l directly, by analogy with the case n = 2, rather than considering
n-fold products as being produced by iteration. For example, in the case of the
three-fold tensor product space V; ® Vo @ V3, the mappings ¢ and ¢’ to W and
W' (respectively) in figure 1.2 would now have to be from V; ® V5 ® V3, and
both mappings would be trilinear. Moreover, a product basis for V4 ® Vo ® Vs is
obtained by taking any three bases for its factor spaces and forming all possible
three-fold tensor products out of their elements. Observe, also, that there are
the obvious natural isomorphisms between V3 @ Va ® V3 and the spaces in (1.89)
and (1.90).

As one might expect, tensor product distributes over direct sum:
Uo(VeW)=(UaV)e (U W). (1.91)

This is established by associating a vector of form |u) ® (v,w) in the space on
the left with the unique vector of form (|u) @ |v), |u) ® |w)) in the space on the
right.

Finally, the tensor product of two operator algebras .A(V;) and A(V2) is
the algebra A(V1) ® A(V2) whose elements are drawn from the tensor product of
the two vector spaces A(V1) and A(V2) and endowed with the following algebraic
product, defined initially between simple tensors by

(F1 @ F2)(G1© G2) = (F1G1 © F2G2), (1.92)
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and then (consistently!) extended to the rest of A(V}) ® .A(V2) using bilinearity.
Note, in this connection, that the set of all operators of the form Fy ® Iz, where
I, is the identity operator on Vs, is a subalgebra of A(V})®.4(V2) (and, similarly,
with 1 and 2 interchanged).

If k1 1s the dimension of V] and &2 the dimension of V5, then, as vector spaces,
AV1)@A(Vs) = A(V1@V2), because the space on the right has dimension (r1k2)?
while the space on the left has dimension k?k2. Moreover, these algebras will be
algebraically isomorphic when both x; and ko are finite. For consider the map
P AWV @ A(Va) = A(V1 @ Va) whereby Fy @ Fa € A(V1) ® A(V2) is associated
with the unique linear operator in Fy ® F2 € A(V] ® V) with action:

(F1 @ Fa2)(|v1) © |v2)) = Filvi) © Falva) (1.93)

on all product vectors in V; @ V5. (Note that this definition of Fy @ Fa extends
consistently and uniquely to all of V4 @ Va by linearity.) Tt is not difficult to
see that ¢ is one-to-one and a homomorphism. To show that ¢ is onto (and
hence A(V1) @ A(V2) =2 A(Vy ® Va)), consider the image of A(V1) ® A(V2) by ¢,
e, ¥(A(WV) ® A(Va)). Clearly A(V1) @ A(V2) = ¢(A(V1) ® A(V2)), and thus
the latter constitutes a ﬁ%ff%—dimensional subspace of the (mffz)z—dimensional
space A(V1 ® V3). Since each &; is finite, this cannot occur unless the subspaces
(A1) @ A(V2)) and A(V1 @ Va) coincide, which means ¢ must be onto. (Why
does this argument fail in the infinite-dimensional case?)

Everything in the previous two paragraphs generalizes in the obvious way to
iterated and n-fold tensor products of operator algebras.

Notes and References

Clear and nearly exhaustive treatments of finite-dimensional vector spaces can
be found in Lipschutz (1968) and Halmos (1948). Section 1.6’s proof that £
has uncountable dimension was communicated to us by John L. Bell. For con-
cise and fairly general discussions of arbitrary vector spaces, associative, and Lie
algebras—including exercises and applications to modern physics—see Chs. 9-23
in Geroch (1985). MacLane and Birkhoff (1979) is a classic text on algebras. Jor-
dan algebras were first introduced by one of the co-founders of quantum theory,
Pascual Jordan (1932), with the axiomatization of the theory in mind. Shortly
thereafter, Jordan’s collaboration with von Neumann and Wigner (1934) pro-
duced a characterization of a large class of finite-dimensional Jordan algebras,
and the literature on Jordan algebras is now voluminous (e.g., see Jacobson
(1968)). There are also numerous sources for lattice theory, though Birkhoff’s
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(1967) is probably the bible. The term ‘entangled’ was originally coined by
Schrodinger.



2

INNER PRODUCT SPACES

At the beginning of the previous chapter we motivated abstract vector spaces
by recalling some elementary properties of vectors in the plane. However, we
deliberately left out reference to the lengths of vectors and the angles that they
make with one another. In this chapter we discuss the structure necessary to
make generalized ‘length’ and ‘angle’ discriminations within a vector space.

Consider two vectors OA and OB that make an angle ¢ with each other, as
in figure 2.1. Define their dot product in terms of their coordinates by

Oj'@d;f l‘11‘2—|—y1y2. (21)

Despite appearances, the dot product is actually an intrinsic property of the pair
of vectors OA and OB independent of the coordinates used to represent them.
This independence can be seen by rotating the coordinate axes counterclockwise
through an angle 6 to new primed coordinate axes given by (cf. figure 2.1)

' =zcosf+ysind, y = —zsind + ycosb, (2.2)
and then verifying that OA. 0B is preserved by the rotation, 1.e.,
Tyl + Yy = v1ws + Y1y (2.3)

Clearly OA OB is also preserved under reflections about the z- and y-axes:

=a Y =y =y =y (2.4)
Since arbitrary reflections about any axis through the origin are obtained by
composing the ‘basic’ reflections in (2.4) with rotations, OA - OB is invariant
under all rotations and reflections.
From the dot products of vectors we can recover both their lengths and the
angles that they make with one another. By the Pythagorean theorem, the length
of OA is
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(l‘za yz)
Y B z

/

T,y
A(l 1)

z
O\
Fia. 2.1. Lengths and angles of vectors

|0A|| = VOA .04 = /a2 + 42, (2.5)

and similarly for OB. Less obvious is the fact that the angle ¢ between OA and

@ can be recovered from the formula

. oi.o8
= oA 0B (2)

To see this, note that we may evaluate the expression on the right-hand side of
(2.6) with respect to any coordinate axes. Choosing coordinates z” and 3" so
that OB lies along the positive z’'-axis, we obtain

OB = (|0B||,0), OA = (||0A| cos ¢, ||0A| sin 6), (2.7)

and (2.6) is immediate. In particular, ¢ in (2.6) will be Z or 37”, and OA and

OB perpendicular, exactly when their dot product vanishes.

These observations suggest the idea of an abstract vector space, over the reals
or complex numbers, on which is defined a ‘dot product-like’ function that can
be used to make intrinsic geometric distinctions within the space. Such spaces
are called ‘inner product’ spaces, and their structure will occupy us for the rest
of this chapter.
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2.1 Definition

To facilitate algebraic manipulation in inner product spaces, we shall sometimes
allow ourselves to denote a vector such as ki|vy) + ka|ve) by ‘|kivi + kave)
Formally, an inner product space V over K (sometimes also called a unitary
space or pre-Hilbert space) consists of a vector space V over K with an
additional mapping, called the inner product, that assigns to any two vectors
[v), Jw) € V a number in K, written (v|w). This inner product must possess the
following properties (for all k£, k' € K and |v), |v'), |w), |w') € V):

conjugate-symmetry: (v|w) = (w|v)”, (2.8)
positive-definiteness: (v|v) > 0 with equality if and only if |v) = |0), (2.9)
anti-linearity on the left: (kv + k'v'|w) = k*(v|w) + k" (v'|w),  (2.10)
linearity on the right: (v[kw + k'w') = k(v|w) + &' (v|w'). (2.11)

The asterisks above, which are redundant if X = R, denote complex conjugation,
le.,c=a+bi = c* =a—bi. Also, the requirement of antilinearity is actually
redundant since it follows from linearity, conjugate-symmetry, and the fact that
for any two complex numbers (¢1 + c2)* = ¢f + ¢} and (¢1¢2)* = ¢f¢s. And note
that, by conjugate-symmetry, (v|v) is real, so that the inequality in (2.9) makes
sense.

Two immediate consequences of the definition of an inner product should be
noted straightaway. First, the zero vector must have zero inner product with all
other vectors. (Why?) Second, any two vectors that have the same inner product
with all vectors must in fact be the same vector, i.e.,

(ulv) = (u|w), for all ju) €V = |v) = |w). (2.12)

For, assuming the antecedent in (2.12) and using linearity, we have (u|v — w) =
(ulv) = (u|w) = 0 for all |u) € V. In particular, (v — w|v — w) = 0, which by
positive-definiteness requires that |v) — |w) = |0).

The length or norm of a vector |v) in an inner product space is defined to
be ++/(v|v), which we shall denote simply by ||v]]. With this ‘norm function’
on vectors, an inner product space instantiates a more general kind of space. A
normed space V over K is a vector space V over K in which every vector |v)
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is assigned a number ||v|| € K in such a way that the following properties are

satisfied (for all k € K, |v), |v') € V):

[lv]] > 0 with equality if and only if |v) = |0}, (2.13)
ko]l = |k[ []v]], (2.14)
triangle inequality: ||v + w|| < ||v|| + [Jw]|. (2.15)

(Here |k| = +vVk*k, which reduces to the usual absolute value for k when K =
R.) The definition of a vector’s norm in an inner product space automatically
guarantees (2.14), and also (2.13) by positive-definiteness. The triangle inequality
can be extracted from the

Schwarz inequality: |(v|w)| < ||v]] ||w]| for all |v), |w) € V. (2.16)

If |w) = |0}, the Schwarz inequality is trivial. Otherwise, it is proved by invoking
positive-definiteness of the inner product to justify writing

<v G ‘ SECI L) w> > 0. (2.17)

(wlw) (wlw)

If we then expand out the left-hand side of (2.17) using linearity and antilinearity,
and take the square root of both sides, the Schwarz inequality follows. To obtain
from it the triangle inequality, simply substitute |v) + |w) in for both |v) and |w)
in (2.16), square both sides, and use linearity and antilinearity.

An inner product space qua normed space also instantiates a still more general
space within which discriminations of distance can be made. A metric space is
a set, S, on which a distance function, d(a,b), is defined. This function, called
the metric, maps any two points a,b € S to a real number and satisfies (for all

a,b,ce S):

d(a,b) > 0, with equality if and only if a = b, (2.18)
d(a,b) = d(b,a), (2.19)
d(a,c) < d(a,b)+ d(b,c). (2.20)

If we take S to be a normed space V', and define the distance between its ‘points’
(in this case, vectors) in terms of the norm as d(|v), |w)) = |Jv — w||, then (2.18)
and (2.19) are automatic, while (2.20) follows from the triangle inequality by
making the appropriate substitutions. This definition of distance in V is called
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the metric induced by the norm in V. For vectors in the real plane, it
corresponds to taking the distance between the two vectors OA and OB in
figure 2.1 to be the distance between the tips of their arrows, as measured by
the length of the vector OA-0B (obtained via the parallelogram law).

2.2 Examples

Consider the free vector space over a set S, F(S), and let {f;}ses be the blip
function basis (cf. Sections 1.2 and 1.5). Then for any two vectors |v), |w) € F(S)
(in this case, finite support functions) there are finite subsets A, B C S and
unique expansion coefficients such that

[v) = > kofs and |w) = Y L f,. (2.21)

SEA se€B

Defining
(wlwy €N kL (2.22)

sEANB

F(S) is easily seen to be an inner product space. As we have seen, in the case
where S'is {1,...,n}, F'(S) = £". The inner product of two column matrices in
7, with respective entries {k; }7_, and {/; }7_,, is usually computed by converting
the first matrix into a row matrix with the same entries conjugated, and then
calculating its matrix product with the second matrix according to the rule

(ki k) (1 "
o= D kL (2.23)
ln i=1

which is a special case of equation (2.22). In the case of R? (2.23) is of course
just the dot product of two vectors.

The infinite analogue of the rule in (2.23) is also an inner product for ¢~
(the case where S = N, the natural numbers). However, (2.23) does not supply
a well-defined inner product on ¢ because the summation on the right in (2.23)
will not always be finite for matrices without finite support. (For example, we
might have k; = {; = 1 for all 7, in which case we would be trying to ‘sum’ an
infinite number of 1’s in (2.23).) To overcome this problem, one considers the
largest subspace of £ within which the rule in (2.23) is defined. To see how this
subspace 1s identified, let us first return to the topic of metric spaces.
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An element s in a metric space S is a limit of an infinite sequence of
points s1,82,...,8,,...1n S if for any € > 0 there exists a positive integer M
such that

n> M = d(sy,s) <e. (2.24)

(There is no loss in generality in considering only infinite sequences, because
finite ones may be regarded as infinite sequences that, at some finite stage in
the sequence, become constant. Clearly, then, the limit of a finite sequence, thus
understood, is just its last member. For countably infinite sets or sequences,
we shall always write {s,} with the understanding that this means ‘{s,}5>,".)
Intuitively, s is a limit of the sequence {s,} if you can get closer and closer to
point s € S by taking points further and further along in the sequence, where
the standard of ‘closeness’ is set by the metric defined on S. (See figure 2.2.)
It follows from the properties of a metric (i.e., (2.18)—(2.20)) that a limit of a
sequence, if it exists, is in fact unique. For supposing that s’ is another limit of
{s,}, we have

d(s',s) = d(s',sn) + d(sn, s) for all n. (2.25)
Since both terms on the right-hand side of (2.25) can be made arbitrarily small
for sufficiently large n, it must be the case that d(s’, s) = 0 and thus s’ = s. When
the limit of a sequence {s,} does exist, the uniqueness of the limit justifies us
writing s, — s, meaning that {s,} approaches s as n goes to infinity. It is easy
to see that s, — s is equivalent to asserting that d(s,,s) — 0 in the metric space
of the reals R equipped with the usual distance function d(ry,rs) = |r1 — ral.

SM+1
SM
53 ...
51 52
Fig. 2.2. Limit of an infinite sequence in a metric space

In a general metric space, not every sequence need have a limit, since the
sequence may ‘jump around all over the space without ever settling down’. A
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necessary condition for a limit to exist 1s that, beyond a certain point in the
sequence, the remaining points in the sequence must get closer and closer to one
another (otherwise, how could they be expected to ‘homein on’ any limit point?).
Such sequences are called ‘Cauchy’, and the precise definition is: a sequence {s,, }
in a metric space is a Cauchy sequence if for any € > 0 there is a positive integer
M such that

n,m > M = d(sp, sm) < €. (2.26)

Equivalently, we can express the idea that {s, } is Cauchy by writing d(s,, sm) —
0 (in R), regarding {d(sn,sm)} as a doubly indexed infinite sequence of real
numbers.

While being Cauchy is necessary for a sequence to converge, it is far from
sufficient. Consider the metric space R (the real line) with the point 0 removed.
(Clearly one can always take any metric space and remove points to get a new
metric space.) There are plenty of Cauchy sequences in this space which ‘want
to converge’ to the 0, but cannot because 0 is not in the space! By contrast, a
metric space is said to be complete if every Cauchy sequence converges to a
limit within the space. Intuitively, the metric space R, without any points deleted,
is complete, though we shall not review the formal proof (see Sutherland 1975,
Theorem 1.2.9). Moreover, it is a corollary of R’s completeness that the metric
space of complex numbers C' (with distances again measured by absolute values
of differences) is complete as well. For if {¢,,} C C is Cauchy, then denoting the
real and imaginery parts of each ¢, by a, and b,,, we have

\/(an —am)? =+ (b — bn)? = |en — em| = 0, (2.27)

which entails that both {a,} and {b,} must be Cauchy in R. Thus there exist
(unique) a,b € R such that a, — @ and b, — b. Given this, we leave the reader
to verify that ¢, = a, + b, — a + b.

Now our problem with defining an inner product on £ arose from the fact that,
for two infinite column matrices with entries {k; } and {/;}, and only finitely many
of these entries nonzero, the sum

ik;‘li (2.28)
i=1

may not be defined. So when is this sum defined? When there is a number £ € K
to which the sum converges, in the sense that the following sequence of its ‘partial
sums’ converges to k:
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> kil — k. (2.29)
i=1

So if there is any hope of obtaining an inner product space from ¢, we must at
least restrict ourselves to the subset, which we denote £, of column matrices in
£ that are square-summable, i.e., column matrices

k1 o
k2 | for which Z |k;|? converges in R. (2.30)

i=1

In fact, this restriction suffices: £5 ¢s an inner product space with its inner product
given by (2.28).

To see why, consider any k € K, and any two square-summable matrices in
L5 with entries {k;} and {l;}. Then we have

D lkkil? =Rkl = | Y kkl? (2.31)
i=1 i=1 i=m+1
= D |kki? (2.32)
i=m+1
=[k* Y |kl* =0 (2.33)
i=m+1

(using the square-summability of {k;} in (2.33)). This shows that the sequence

of partial sums
{Z|kki|2} (2.34)

i=1
is Cauchy in R, and therefore (since R is complete) that ¢5 is closed under
multiplication by any number k. Using similar reasoning, we can show that the
product in (2.28) is well-defined throughout £2 by observing that

S okl < Y wul= Y W< Y (kP46 =0, (2.35)
i=m+1 i=m+1 i=m+1 i=m+1

using the triangle inequality in the first step of (2.35) and, in the penultimate
step, using ab < max(a?,b?) < a? + b? (which holds for any two real numbers).
Finally, to see that £5 is closed under vector sums, note that
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STtk L = Y0 (kal? + L+ kL + 1 k) (2.36)
i=m+1 i=m+1
< D (Rl + 161 + 14|+ [ Ril) =0, (2.37)
i=m+1

where we have invoked the calculation in (2.35) (and the square-summability of
{k;} and {l;}) when taking the limit in (2.37).

As a last example of inner product spaces, we consider tensor products and
direct sums. Any tensor product V4 ® Vs of two vector spaces on which inner
products are defined inherits a natural inner product structure from its factor
spaces. Writing |v1) ® |va) as |v1 ® va), define

(v1 @ vs|vf @ vh) = (un]v]) (vavh) (2.38)

and then extend this definition (it extends consistently) to pairs of entangled
vectors in V4 ® Va2 by assuming (-|-) is antilinear in its first argument and linear
in its second. The result 1s an inner product on V; ® V5. We shall always assume
that tensor product spaces have this natural inner product induced on them by
the inner products on their factor spaces. Similarly, we shall always assume that
V1 @ Va comes equipped with the inner product defined (completely) by

(w1, v2) (v, vh)) ' (o] vh) + (vauh). (2.39)

2.3 Orthogonality and Complete Orthonormal Sets

Two vectors |v) and |w) in an inner product space are said to be orthogonal
if they have zero inner product. Since (v|w) = (w|v)*, the relation of orthog-
onality between vectors is symmetric, in accord with the geometric picture of
orthogonality as perpendicularity in R? and R®. Trivially, |0) is orthogonal to
every vector, and a quick computation verifies the generalized Pythagorean
theorem:

{v;}7—, are mutually orthogonal = Z |vs)

i=1

2 n
= vl (2.40)
i=1

We leave the reader the exercise of using (2.40) to show that any set of nonzero
mutually orthogonal vectors is linearly independent. (Clearly the converse fails:
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vectors in R? that make a nonzero acute angle with each other are linearly
independent but not orthogonal.)

Now partially order by inclusion the set of all subsets of (nonzero) mutually
orthogonal vectors in an inner product space. By a trivial application of Zorn’s
lemma, this poset has a maximal element, i.e., a mutually orthogonal set not
properly contained in any other, called a complete orthogonal set. More often
than not, one works with complete orthonormal sets, which have the additional
property that each vector in the set is a unit vector, i.e., has norm 1. Dividing
any vector |v) by its norm [|v]|, called normalizing the vector, produces a unit
vector |v)/||v]|. We shall often denote unit vectors by the letter e, as in ‘|e1)’.

Evidently, an orthonormal basis for an inner product space V is a set of
(nonzero) mutually orthonormal vectors that span the vector space V. Every
orthonormal basis is also a complete orthonormal set. However, when the di-
mension of V' is uncountably infinite, the converse fails, as illustrated by the
following sequence of vectors in £s:

1

(2.41)

bl

OO = O
O = OO

0
0
0

Clearly no vector in ¢5 can be orthogonal to all vectors above unless it is zero,
so these vectors define a complete orthonormal set. Yet the vectors in (2.41) do
not provide a (vector space) basis, since no matrix in ¢; without finite support
is in their span. (They do, however, form an orthonormal basis in ¢V.) Thus,
the existence of complete orthonormal sets in any inner product space does
not guarantee that such spaces always possess orthonormal bases. (However,
this situation will improve when we regard f5, not just as an inner product
space, but as a ‘Hilbert space’. For orthonormal bases of Hilbert spaces are only
required to span a ‘dense subset’ of the space, and every Hilbert space possesses
an orthonormal basis, thus understood. See section 17.)

On the other hand, for any inner product space with countable dimension,
there is a well-known procedure, called the Gram-Schmidt orthonormaliza-
tion process, for actually constructing an orthonormal basis {e;} out of an
arbitrary (not necessarily orthogonal) basis {v;}. First, define

det |v1)
ey 4 1) (2.42)
[Jval|
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Define the next element of the orthonormal basis by

lea) % 1920 e Jua) = Jua) = (vsler)er), (2.43)
(w2l
which is well-defined (because |ws) # |0), by the linear independence of {v;}),
orthogonal to |e1) (by direct calculation), and such that the spans of the sets
{e1,e2} and {v1, va} coincide (because each set lies in the other’s span). Continue
this process, defining the jth element of the orthonormal basis in terms of the
previously defined elements as
det |wy)
lej) = e
[l |
which is again well-defined, orthogonal to all previously defined vectors, and such
that the spans of {eq,...,¢e;} and {v1,...,v;} coincide. (The full proof of these
facts would proceed by induction on j. Figure 2.3 illustrates the case j = 3.)
Repeating this process finitely or countably many times, as needed, we obtain a
set of vectors {e; } with the same span as {v; }, because every vector |e;) € {e;} is
a (finite) linear combination of vectors {v;};<; C {v;}, and vice-versa. Since we
began with a set {v;} that spans the whole space, the constructed orthonormal
set {e;} is an orthonormal basis.

lwi) = lvj) — (vile)er) — - = (vjlej—1)lej—1) (2.44)

les)

lws)|  |us)

le2)

le1) (vsler)ler) + (valea)|e2)

Fia. 2.3. Gram-Schmidt orthogonalization process for j = 3

We end this section with two further remarks about orthonormal bases in
inner product spaces with countable dimension. First, inner products determine
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the coefficients of any vector expanded in terms of an orthonormal basis {e;}.
Writing

lv) = Zkﬂej% (2.45)

we can, for any index value m, take the inner product of |e,,) with both sides of
(2.45), yielding kn, = (e |v). Second, if we have any two orthonormal bases E
and F5 for Vi and V5, then the simple tensors of form

{ler @ ea) : |e1) € En, |ea) € Ea} (2.46)

not only form a basis in Vi ® Vs, as usual, but an orthonormal basis as a con-
sequence of (2.38). We leave the reader to make out the corresponding claim for
the direct sum of two inner product spaces (cf. (2.39)).

2.4 Orthogonal and Orthoclosed Subspaces

Any subspace of an inner product space, i.e., of its underlying vector space, is
itself an inner product space, upon restricting the taking of inner products to
pairs of vectors in the subspace. U and W are called orthogonal subspaces,
and we write U L W, if every vector in the one is orthogonal to every vector in
the other. Because |0) is the only vector orthogonal to itself, orthogonal subspaces
can only intersect in the zero subspace and are therefore complementary. (Hence,
two planes in R that intersect at right angles are not orthogonal subspaces.)

For any subspace W the set of all vectors orthogonal to every vector of W
is itself a subspace W' called the subspace orthogonal to W. Using this L
(pronounced: ‘perp’) operation on subspaces, U L W can also be expressed by
writing U C W+t or, equivalently, W C U+ (by symmetry). The operation L
can be applied more than once to a subspace, yielding (W)L which we write
as WLt.

The following properties of L follow straight from its definition, and apply
for any two subspaces U and W of any inner product space V:

0t=V, Vt=0 Wnwt=0, (2.47)
WCU = Utcwt, (2.48)
wcwtt (2.49)

(Here, 0 denotes the zero subspace.) We shall feel free to invoke any of these prop-
erties below without further comment. Note that we cannot strengthen (2.49) to
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read W = WL, For a counterexample, take W to be the subspace ¢~ C £5. We
have already noted that any vector in ¢5 orthogonal to every vector in £¥—in
particular, orthogonal to every element of the orthonormal basis for £ given in
(2.41)—must in fact be the zero vector. So (¢V)+ = 0 and (¢V)+L =5 £ (V.

If a subspace W of an inner product space V does satisfy W = WLt it is
called orthoclosed. Clearly both 0 and V' itself are orthoclosed. And, in view of
(2.49), it suffices for W’s orthoclosure to establish that W1+ C W. Thus, for any
subspace W, W+ is orthoclosed because W C WL+ whence (W1)1+ C Wi,

In addition, if a subspace W C V is finite-dimensional, it is automatically
orthoclosed. To see this, it suffices to show that WL ¢ W contradicts the finite-
dimensionality of W. So suppose that there is a vector |v) € WL+ that is not in
the span of W. Let {¢; }72; be an orthonormal basis for (finite-dimensional) 1.
Then {e; }72, U {v} is linearly independent and spans a subspace U such that
W C U C WtL. Because U itself is an inner product space of finite dimension, we
may apply the Gram-Schmidt process to the basis {e;}72; U{v} in U. The process
will leave the first m mutually orthonormal vectors in the basis unchanged and
replace |v) with a new normalized vector |em,41) orthogonal to all the vectors in
{e; }72,. But there can be no such (nonzero) vector as |en41)! For it would have
to be both orthogonal to W, i.e., in W+, and contained in U C W+, yet we
know Wi nWwit =o.

Finally, the intersection of an arbitrary (not necessarily countable) collection
{Ux}en of orthoclosed subspaces is again orthoclosed. For each U35 is orthogonal
to the subspace ﬂAeA Uy, which means we have

i 11
U C (ﬂ UA) = (ﬂ UA) C UL = Uy (2.50)
AEA AEA
. . 11
Since this is true for all X, (ﬂAeA UA)
orthoclosed as well.

C [xea Ux and the intersection is

2.5 The Lattice of Orthoclosed Subspaces

We saw in Section 1.4 that the subspaces of a vector space form a complete
atomic lattice. The same is true for the orthoclosed subspaces of an inner product
space V. Ordering them by inclusion, we obtain a poset with minimum element 0,
maximum element V' and with all (necessarily orthoclosed) one-dimensional sub-
spaces as atoms. The meet of any collection of orthoclosed subspaces is clearly
just their intersection (which is orthoclosed, by the argument of (2.50)). But
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what of their join7 It must at least contain their span, but that will not nec-
essarily produce an orthoclosed subspace. What we seek, then, 1s the smallest
orthoclosed subspace containing their span. But for any subspace W, the small-
est orthoclosed subspace that contains W is just WL+, For if U is another such
subspace containing W, we have

WcU = Uvtcwt = wttcutt=u. (2.51)

Thus for the join of an arbitrary collection of orthoclosed subspaces, we must
take the orthoclosure of their span. For just two subspaces U and W, we shall
denote their orthoclosed span, (U + W)t by UV W (i.e., we use the same
symbol as that used for the join in an abstract lattice).

Due to the presence of the L operation on subspaces, the lattice of ortho-
closed subspaces of an inner product space has some additional structure. A
lattice £ (with minimum and maximum elements 0 and 1) is called orthocom-
plemented, or an ortholattice, if it is equipped with an operation * : £ — £
(called an orthocomplement on £) that satisfies (for all a,b € £):

aNat =0, aVat =1, (2.52)
a<b = bt <at, (2.53)
att =a. (2.54)

(Again, we have allowed ourselves to use the symbol 1 to denote both the or-
thocomplement in an abstract ortholattice and the concrete operation of ‘take
the orthogonal subspace’ on subspaces.) To show that the lattice of orthoclosed
subspaces does indeed form an ortholattice under *, all that remains to check is
the second property in (2.52). Let W be orthoclosed and set X = W VvV W+ (so
X is also orthoclosed). We must show X = V. Clearly W C X and Wt C X,
so we have X+ C W+ and X+ C WtL. And since WL n WL+ = 0, it follows
that X+ = 0. Therefore, X1+ = X = V as required. For an abstract ortholat-
tice we shall always write £, whereas for a concrete ortholattice of orthoclosed
subspaces we shall write £ (V).
It is a simple matter to check that, in any ortholattice £,

de Morgan’s laws: (a V b)* = at Abt and (a Ab)T = at v bt (2.55)

hold (and, in particular, these ‘laws’ hold in £ (V')). For example, to obtain the
first law, begin with @ < aVb and b < aVb. Then (aVb)L < at and (aVb)L < bt
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whence (aVvb)t < atAbL. To obtain the reverse, i.e., (aVb)t > at AbL | start with
at Abt < at and at AbL < bt Then we have a < (et AbL)L and b < (at AbL)*,
whence a V b < (at A bL)L which, in turn, entails at A bt < (a Vv b)L.

An ortholattice £ is called an orthomodular lattice if, in addition, it
satisfies (for all a,b € £ ):

a<b = b=aV(bArat). (2.56)

Evidently distributive ortholattices are necessarily orthomodular, but not con-
versely. It turns out that £ (V) will be orthomodular whenever the span of two
orthogonal subspaces in £ (V) is itself orthoclosed, i.e., if £, (V) satisfies the
condition

UWeL, (V), ULW = U+WeLli(V). (2.57)

To see that (2.57) is sufficient for the orthomodularity of £, (V'), consider two
subspaces U C Win £ (V) and set X = UV (W NUL). Evidently, X C W, but
we need to show that X = W. Reworking the left-hand side of

WnUHvwnuhH)t=v=wvwt (2.58)

using de Morgan’s laws, we obtain X V W+ = W VvV W+, Because X C W, both
X and W are orthogonal to W+. Thus (2.57) licenses us to write X + W+ =
W + W+ from which it follows easily that X = W. Note that, when V is finite-
dimensional, (2.57) is automatic, and hence £, (V) orthomodular. Moreover,
we shall see in section 7?7 that (2.57) also holds for the inner product spaces
employed in quantum theory (viz., ‘Hilbert spaces’). When V is such that £, (V)
is orthomodular, we shall denote the latter by £, _(V), and always denote an
abstract orthomodular lattice by £ .

A sublattice of an ortholattice £ is any subset closed under meets, joins and
orthocomplements. In fact, taking the complements of both sides of de Morgan’s
laws, join is expressible in terms of meet and orthocomplement, and meet is
expressible in terms of join and orthocomplement. Thus we need only demand
that a sublattice of £, be a subset closed under orthocomplements and either
joins or meets. And, of course, any sublattice of £, will itself be orthomodular.

The sublattice generated by a subset S of an ortholattice £ is the smallest
sublattice of £ containing S, obtained by closing S under the operations of £ .
For example, the sublattice generated by two distinct, nonorthogonal rays A, B €
L1, (R3) is depicted in Figure 2.4. Note that the sublattice of £(R3) generated
by A and B would have seven fewer subspaces, since there is no requirement in
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AtnBt
RS
AL Bv MV B4
4
B AV (AV Byt
/ 0
(AvB)naAt ™
(AvB)nB*t B
AV B A

Fic. 2.4. Sublattice of £ (R3) generated by A and B

L(R3) to close under orthocomplements. In general, it is a complicated affair to
determine the structure of a fully generated sublattice of £ (V') given generators
for the sublattice. But the situation simplifies considerably when the generators
of the sublattice are all ‘mutually compatible’ (our next subject).

2.6 Compatible Subspaces and Boolean Algebras

In addition to orthogonality, there is also a further symmetric relation between
elements of an orthomodular lattice £, . Elements a,b € £, are said to be
compatible, and one writes a <> b, exactly when there exist three mutually
orthogonal (not necessarily nonzero) elements z,y, z € £, such that

a=zVz, b=yVz. (2.59)
L ’s orthomodularity automatically ensures that:
a<b = aeb (2.60)

(So, while there was nothing stopping us from defining compatibility between ele-
ments in an arbitrary—mnot necessarily orthomodular—ortholattice, (2.60) would
not have been guaranteed.) Similarly, two subspaces U, W C £, (V) that satisfy
condition (2.59) are called compatible subspaces. The picture is that U and
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W are orthogonal, except possibly for an overlap within some third subspace.
Thus orthogonal subspaces in £ (V) are always compatible, but the converse is
false. For example, two planes in £ (R>) at right angles, while not orthogonal,
are compatible (the overlap subspace being the unique ray in which the planes
intersect). As another example, note that A* N BL in Figure 2.4 is compati-
ble with every other subspace in that figure, but the two planes on the left are
incompatible (as are the two on the right).

For any compatible pair a,b € £ _, it turns out that the three mutually
orthogonal elements in (2.59) are uniquely fixed by a and b via the following
equations:

x=aAbt, (2.61)
y=a" Ab, (2.62)
z=aAb. (2.63)
To derive (2.61), first observe that
r<ytie<zt = a<ytAzt=(yva)t =0t (2.64)

However, # < a, and thus, invoking the final inequality in (2.64), = < a A b™.
But we also have the implications

r<aAblt <bt=b<at (2.65)
=zt =bV (zt AbL), (2.66)
=z =b" Az VD) (2.67)

(using orthomodularity and de Morgan’s law in (2.66) and (2.67)). Since x V b
equals a Vv b (after all, they both equal # V y V z), it follows from (2.67) that
z =bt A(aVb). Invoking # < a A bt one last time,

r<anbt<(avb)ablt =z, (2.68)

which entails (2.61). A parallel argument for (2.62) is obtained by interchanging
the roles of # and y (and, therefore, a and b). (2.63)’s proof, on the other hand,
calls for a few more ortholattice gymnastics:

<zt y<zt=azvy<zt, (2.69)
= 1 = (zVy)V [z1 A (zV y)J‘] (orthomodularity),(2.70)
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=>z=(aV y)J‘ A(zVaVy) (de Morgan), (2.71)
= 2z =[(aAbE)V (at AD)E A (a VD) (2.61), (2.62),(2.72)
= z=(at Vb)A(aVbt)A(aVb) (de Morgan).  (2.73)

Now a A b, since it is < both a and b, is < all three of a* V&, a V b+, and a V b.
It then follows (using (2.73), and the fact that z is < both @ and b in the final
step) that

anb< (@t V) A(aVEr)A(aVb)=2<aAb, (2.74)

completing the proof of (2.63).
We can now establish the following two alternative characterizations of the
compatibility of a pair a,b € L, :

asb & a=(aAb)V(aAb), (2.75)
& b=(bAa)V(bAat). (2.76)

We need only verify the first equivalence (since the second then follows by
the symmetry of compatibility). The implication ‘=’ follows immediately from
(2.59), (2.61), and (2.63). For ‘=’, note that we can use orthodularity to write

b=(bAa)V[bA(bAa)t]. (2.77)

Because b A (b Aa)t, a Abt, and a A b are mutually orthogonal, (2.77), together
with @ = (@ A b) V (a A bL), jointly entail a <+ b. The equivalences in (2.75) and
(2.76) make it easy to see that

a b = the elements {a,b, at, bt} are pairwise compatible. (2.78)

As we have seen, lattices need not be distributive. But if three elements
a,b e € L, are mutually compatible, then the distributive laws well hold with
respect to those elements. Consider distributivity of A over V first. Regardless
of compatibility, we always have

(anb)y<an(bve)and (aAec)<aA(bVe) (2.79)

and, so, it must be the case that (¢ Ab)V (e Ac) < aA(bVc). To obtain the
reverse inclusion, note that a <+ b and a < ¢ imply

ah(dVey=an[(bAa)V(bAat)V(eAa)V(cAat)]. (2.80)
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Setting
s=(bAa)V(cAa)and t = (bAat)V(cAat), (2.81)

we need to show that a A (s V¢) < s. But observe that s < a < t! and, in
particular, that s and ¢, being orthogonal, are compatible. Tt follows from (2.68)
(substituting s for a and ¢ for b) that (s V) At = s AtL. And so we obtain

aA(sVE)<tEA(sVE)=sAtt <s (2.82)

and A distributes over V as claimed. We leave the reader to verify that V also
distributes over A. (Just use the fact that if {a,b, ¢} are pairwise compatible,
so are {at, bl ¢t} (cf. (2.78)), together with A’s distribution over V, and de
Morgan’s laws.)

A Boolean algebra is a distributive ortholattice. Thus, by the previous
paragraph, any sublattice of £ consisting entirely of mutually compatible sub-
spaces is a Boolean subalgebra of £, . In fact, somewhat more is true: the sub-
lattice generated by any subset of £, is Boolean if and only if the generating
subset 1s mutually compatible. For the ‘only if” part of this claim, consider any
two generators a and b. Invoking distributivity within the generated sublattice,
we have

a=aNl=aA(BVbt)=(anb)V(aAb) (2.83)
thus @ < b. (This also establishes that if a sublattice of £ is Boolean, all
its elements must be mutually compatible; for a sublattice is nothing but the
sublattice generated by its members.) For the converse ‘if’ part of the claim,
recall that if the generators of a sublattice are all compatible, then they will be
compatible with each other’s, and their own, orthocomplements. Moreover, each
generator a will be compatible with the join of any two other generators by V bs.
For, since @ + b1 and a <+ by by hypothesis,

by = (by Aa) V (by Aat) and by = (b Aa) V (b2 Aa'). (2.84)

Using the pairwise compatibility of {6y, bs, a, a*}, and therefore freely employing
distributivity, 1t follows that

by Vb = [(b1 Aa) V(b2 Aa)]V [(b1 Aat)V (bs Aat)] (2.85)
= [(b1 Vba) Ad] V [(b1 V ba) Nat] (2.86)

and a & (b1 V ba). Thus, because the generators are not just compatible with
each other, but with each other’s complements and joins, the sublattice they
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generate must consist entirely of mutually compatible subspaces, and therefore
be Boolean.

Since Figure 2.4 contains incompatible subspaces, the sublattice of £ (R?)
depicted therein fails to be Boolean. On the other hand, that sublattice consists
of seven distinct overlapping Boolean subalgebras. For example, focusing just on
the Boolean subalgebras generated by A alone and B alone, they intersect in the
(trivial) Boolean subalgebra {0, R?}, as shown in figure 2.5. More generally, any
sublattice of £ is the union of all its Boolean subalgebras, since any element of
the sublattice will be contained in the Boolean subalgebra that element generates,
which itself must be contained in the given sublattice. In addition, it 1s clear that
any two compatible subspaces in a sublattice will always lie within one of the
sublattice’s Boolean subalgebras. This fact suggests an alternative way of viewing
a sublattice of £ _, viz., as a collection of overlapping Boolean algebras in which
any two elements are contained in one of those algebras. Viewed in this way, £,
instantiates a ‘partial Boolean algebra’, which is a structure that can be defined
without reference to an underlying nondistributive orthomodular lattice.

RS

AL
BJ_

o

FIG. 2.5. Subalgebra of B(R?) generated by A and B

Before proceeding to the formal definition of a partial Boolean algebra, it is
important to note that a Boolean algebra may itself be defined without reference
to lattices or posets. First note that in any Boolean algebra, i.e.; distributive
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ortholattice, the following identities automatically hold:

avVb=0bVa aAb=bAa, (2.87)
avVve)=(avb)Ve, aAn(bAec)=(anb)Ac, (2.88)
(avbyAb=b, (anb)Vb=hb, (2.89)
(avbhe=(anc)V(bAc), (aAb)Ve=(aVe)An(bVe), (2.90)
aVat =1, aAat=0. (2.91)

Now let (B,A,V,L1,0,1) be a structure in which B is a set with designated
elements 0 and 1, A and V are binary operations on the set, and L is a unary
operation. It turns out that if the identities (2.87)—(2.91) hold in this structure,
and we define the relation < on B by

a<b & aAb=a, (2.92)

then B must be a distributive ortholattice in which A, V, and L are the meet,
join, and orthocomplementation operations, and 0 and 1 are the minimum and
maximum elements. The complete proof of this claim is left to the reader, but to
illustrate the strategy, we shall show that a < & = b+ < a*. First observe that
for any ¢ € B,

cAl=1Ac=(cVet)Ae=(ctVe)Ae=e, (2.93)
eV0=0Ve=(cAct)Ve=(ctAe)Ve=c. (2.94)
Using the definition of the partial ordering in (2.92), equations (2.93) and (2.94),

and the identities (2.87)—(2.91), we can then construct the following sequence of
entailments:

a<b=aAb=a, (2.95)
= (aAb)Vat =avat =1, (2.96)
= (aVar)A(bvat) =1, (2.97)
=1A(Vat)=bvat =1, (2.98)
= (bVat)Abt = 1A = bt (2.99)
= (bALE)V (et AbE) = bt (2.100)
=0V (at Abt) =at Abt =bt (2.101)
= bt Aat =bt = bt <ot (2.102)

A partial Boolean algebra is a structure <[)~’, &, AV, LL0,1) in which B
is a set containing 0 and 1, <> is a reflexive, symmetric relation on B satisfying
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a < 1forallace [)N’, 1 is a unary operation on l;’, and both A and V are binary
partial operations defined on {(a,b) € B : a < b} and satisfying, for any a < b:

a< bt (avb) < a, (aAb) < a, and (2.103)

the substructure of B generated by {a, b} is a Boolean algebra. (2.104)

(There is, of course, redundancy in this definition because of de Morgan’s laws.)
Taking <>, A, V, and L to have their usual meaningin £ _, it is clear that every
sublattice of £, i1s a partial Boolean algebra, and, in particular, all sublattices
of L1, (V) are. For the partial Boolean algebra of all orthoclosed subspaces of
an inner product space, we shall write B(V)

Evidently, a subalgebra of a partial Boolean algebra B is just a subset of B
closed under L and the partial operations A and V. Moreover, the subalgebra
generated by a subset is obtained just by closing under these operations. Thus,
the subalgebra of l;’(V) generated by a set of subspaces is obtained by closing the
set under orthocomplements and the meets (or joins) of compatible subspaces. Tt
follows that while every sublattice of £, (V) is a (partial Boolean) subalgebra
of l;’(V), the converse fails because closing under meets and joins of compatible
subspaces will not guarantee closure under meets and joins of arbitrary sub-
spaces. For example, all the elements of the subalgebra of B(RB) generated by
two distinct rays A and B are shown in Figure 2.5, whereas we saw in Figure
2.4 that the sublattice of £ (Rs) that they generate is somewhat larger.

2.7 Isomorphisms and Unitary Operators

Two inner product spaces over the same set of numbers are isomorphic if there is
a vector space isomorphism between them that preserves inner products, i.e., that
maps pairs of vectors to pairs of vectors in the image space with the same inner
product. (There is slight redundancy in this definition, because any (not neces-
sarily linear) mapping ¢ : V. — W that preserves inner products is necessarily
one-to-one—and the latter is, of course, built into the definition of a vector space
isomorphism. To show that ¢ is one-to-one, observe that ¢|v) = ¢|v') implies
(ulv) = (u|v’) for all |u) € V.) For example, the vector space isomorphism dis-
cussed in Section 1.7 that maps the vectors in a real (or complex) n-dimensional
space to their column matrix representations in R® (or C™ ) preserves inner
products, so that this isomorphism is an inner product isomorphism as well. For
another example, given two subspaces U, W C V of an inner product space,

V= U @W (as inner product spaces) if and only if U L W and U+ W = V.
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Obviously, if one knows the inner products between all vectors, the norm of
any vector is fixed. Less obvious, but equally true, is the converse: that the norms
of all vectors in an inner product space fix the inner product between any two
vectors. If the space is complex, a tedious (but elementary) calculation reveals
that

1 L o
(lw) = 7 (lv+wll” = [lo = wl]” + illo + iw||* = dljv = dw]]"), (2.105)

and the appropriate expression for a real inner product space is obtained by
simply dropping the last two terms in (2.105). It follows that, given a linear
mapping ¢ : V — W, ¢ will preserve norms if and only if ¢ preserves inner
products. For example, the ‘shift’ operator invoked in (1.60) is patently norm-
preserving, and hence preserves inner products as well.

By the previous paragraph, it is clear that we could have defined an inner
product isomorphism as a norm-preserving vector space isomorphism. This def-
inition would then just be a special case of the definition of an isomorphism
between two arbitrary normed spaces. Of course, not every normed space need
be an inner product space (i.e., need have a norm definable in terms of an inner
product on the space). But if the norm on a vector space V happens to satisfy:

the parallelogram law : [|v 4+ o'||* + [|Jv — v/||* = 2||v[|* + 2||¢||?, (2.106)

then defining an inner product on V' via the formula (2.105) makes V' an inner
product space. The proof of this is left to the reader, as is the verification that
the parallelogram law holds of the norm in any inner product space. Thus, the
parallelogram law is both necessary and sufficient for a normed space to define
an inner product space.

Before proceeding, we need to make a few remarks about notation. When we
wish to take the inner product of a vector |w) with a vector F|v) (obtained by
applying the operator F to |v)), we shall write the latter as |F'v) and the inner
product as (w|Fv). Similarly, the inner product of F|v) with |w) will be written
as (Fv|w). As a simple application of this notation, recall from Section 2.3 that
the expansion coefficients of a vector |v) in terms of an orthonormal set {e; } are
given by {(e;|v)}. Therefore the ijth entry of the matrix in £ that represents
a linear operator F relative to an orthonormal basis is Fj; = (e;|Fe;) (cf. the
discussion prior to (1.57)).

One is often interested in the special case where the inner product isomor-
phism at issue maps the space back onto itself, in which case it is called a uni-
tary operator. For example, in R3, the unitary operators are rotations about
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fixed axes, reflections through planes, and compositions thereof. (Is (1.60)’s shift
operator unitary?) Because a unitary operator preserves inner products, it will
preserve orthogonality between vectors and norms. Therefore unitary operators
must map orthonormal bases into orthonormal bases. Conversely, any two or-
thonormal bases £ and E’ of an inner product space V (of countable dimension)
are related by some unitary operator. For since F/ and E’ have the same cardi-
nality, there is a one-to-one, onto mapping U : £ — F’ that can be extended by
linearity to an operator on V. With this definition of U, it is easy to see that
(Uei|Ue;) = (ejle;) for any two |e;), |e;) € E. Thus for any |v), |w) € V,

(Uv|Uw) = <U2kjej|UZzpep> : (2.107)
j=1 p=1
= > kL (Ue;|Ue), (2.108)
J,p=1
= Z kilp(ejlep), (2.109)
J,p=1

= <Z kjej|21pep> = (v|w), (2.110)

showing that U is indeed unitary, as claimed. (Henceforth, we shall always reserve
the letter U for unitary operators.)

2.8 Bras and Kets

Working in a vector space V with an inner product on it yields a stock of linear
functionals on V' that can be invoked. Every |v) € V' automatically determines
a linear functional f with action f*|u) = (v|u) for all |u) € V. Tt is convenient
to denote the dual vector f¥ by “(v|’. Any dual vector of this form, i.e., given by
(v] for some |v) € V, is called a bra vector. The reason is simple: the action
of a bra vector on any ket vector |u) € V is given by {(v|(|u)) = (v|u), so
the result of that action produces the closed bra(-c-)ket expression ‘(v|u)’. This
symbolism and terminology is not merely cute, but good book-keeping. For we
now know that whenever we see a closed bracket expression, it denotes a number,
whereas terms involving an unclosed ket, such as (v|w)|u), are vectors, and ones
involving an unclosed bra, like k*(v|, are dual vectors. Bra-ket notation also
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helps us to spot (and thus prevent writing down) undefined expressions such as
(v]v"Y{w] + (v'|v)|w), which is a futile attempt to add a vector and a dual vector
(which live in different spaces).

Of course, linear combinations of bra vectors are again bra vectors. One can
immediately see from the antilinearity of the inner product that the following

identity holds (for all k, &' € K and |v), |v') € V):
(kv + KV = & (v] + K™ (V'] (2.111)

Indeed, linearity and antilinearity of inner products can now be restated in terms
of the action of bras on kets as

(vlkw + kw'y = (v|(k|w) + k'|w")), (kv+ kv |w) = (K% (v] + &' ])|w). (2.112)

In writing out inner products of linear combinations of vectors, it will often be
convenient to employ bras and kets in this way. We can also employ them to form

inner products on tensor product spaces in a new way. Where we formerly wrote

(01 @ vavf @ ) (£ (vafvl)(valvs)), we can now write ((v1] @ (va])(Jvf) @ |v5))

where (v1|® (va| lives in the space V}* ® V' and has the same action on elements
of V1 ® Vo as (v1 @ va] € (V1 @ Vo)™,

The obvious question now arises: Is every vector in the dual of an inner
product space a bra vector? ‘Yes’ in the finite-dimensional case, but ‘No’ in
general. In the finite case, recall from Section 1.10 that V" is self-dual, and a
basis for (V")* is given by the linear functionals { f;}7_, with action f,|v;) = §;;
on some arbitrary basis {v; }7_; in V™. If we take the latter to be an orthonormal
basis {e;}7,, then evidently f, has the same action as (e;| for all ¢, and the
linear functionals {f,;}7_; are all bra vectors. So bra vectors span (V™)*. And
since linear combinations of bras are bras, all linear functionals on V™ must be
bra vectors. In the infinite-dimensional case, this claim is false. Consider a space
V with a countably infinite orthonormal basis {e;}, and the element f € V*
with action fle;) = j for all j. Is there a |v) € V such that f = (v|?7 Supposing
there 1s, we would have by the Schwarz inequality

i = Fleg) = [(lep)| < lvll flej [l = [Jof] for all j =1 to oo, (2.113)

which implies the absurdity that |v) has no norm. (Note that the trouble here
stems from the action of f being ‘unbounded’. For Hilbert spaces, which we
discuss later, their duals are defined to be the set of all bounded linear functionals,
and, as a consequence, Hilbert spaces are self-dual and every dual vector is a bra.)



BRAS AND KETS 59

It is clear that the composition of an operator F on V followed by a linear
functional f on V yields the linear functional fF (on V) with action (for all
lv) € V):

(FF)|v) = fIFv) (= f(F|v)). (2.114)

If f’s action is given by a bra vector (w|, such a linear functional can be written
as (w|F. So we now have three conceptually different ways to read the string of
symbols ‘(w|Fv)’: as the inner product of the ket vectors |w) and |Fv) (= F|v)),
as the action of the bra (w| on the ket |Fv), and as the action of the linear
functional {(w|F on the ket |v). Of course, ‘(w|Fv)’ denotes the very same number
on all three readings. It 1s simply a matter of convenience which of these readings
is adopted at any particular stage in an argument.

Just as for linear functionals, operators on an inner product space can be
defined using bras and kets. Any pair of vectors |u), |u’) € V automatically de-
termine an operator on V with action (|u){(u'])|y) = |u)({uly)) (= ({(v'|u))|v)) for
all |y) € V. Supposing that the F of the previous paragraph is of the ket-bra
form |u)(u'| (note: not all operators need be of this form), (w|Fv) can be rewrit-
ten as ‘(w|u){u'|v)’, and this string of symbols now gains a fourth interpretation:
as simply the product of two numbers.

Notes and References

Again, nice treatments of inner product spaces can be found in the final chapters
of Lipschutz (1968) and Halmos (1948). Sutherland (1975) contains an elemen-
tary introduction to metric spaces. Both Cohen (1989) and Beltrametti and
Cassinelli (1981) contain detailed intermediate level treatments of orthomodular
lattices and compatibility, discussed in the context of quantum theory. For more
advanced discussions, see Varadarajan (1968) and Kalmbach (1983). Chapter
4 of Bell and Machover (1977) gives a succint review of Boolean algebras. The
concept of a partial Boolean algebra was first introduced by Kochen and Specker
(1965,1967) in order to found a rival version of quantum logic to that champi-
oned by Birkhoff and Von Neumann (1936), which was based on orthomodular
lattices. Our definition of a partial Boolean algebra follows Bell (1996). The ele-
gant bra-ket formalism was first introduced by Dirac (1939), and made popular
(mainly among physicists) by Dirac’s famous book on quantum theory (1958).
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OPERATORS ON FINITE-DIMENSIONAL COMPLEX
INNER PRODUCT SPACES

In the previous two chapters we put no restriction on the dimension of the
spaces under discussion, nor did we require that they be defined over the complex
numbers as opposed to the reals. In this chapter, we shall focus entirely—apart
from certain general definitions— on inner product spaces V" that are both
finite-dimensional and complex. These restrictions make it possible for A(V") to
possess ‘norm’ and ‘adjoint’ structures that need not be present in the algebra
of (all) linear operators on an arbitrary inner product space.

On the other hand, to formulate quantum theory we only require a special
kind of complex inner product space, called a ‘Hilbert space’, that possesses extra
‘topological” structure. In the next few chapters, we shall see what that struc-
ture amounts to and how 1t permits a certain subalgebra of the linear operators
on a Hilbert space, the ‘continuous’ linear operators, to possess norm and ad-
joint structures that reduce to the corresponding structures possessed by A(V"™)
when the Hilbert space is finite-dimensional. Holding topological considerations
at bay has the advantage of allowing one to gain enough facility with the theory’s
mathematical apparatus to begin delving into literature, a substantial portion
of which presupposes familiarity only with finite-dimensional Hilbert spaces.

3.1 Operator Norms and Normed Algebras

Let V' be an arbitrary (not necessarily finite-dimensional) inner product space.
When it exists, the norm of an operator F on V| denoted |F|, is defined to
be the smallest real number r such that

[|[Fel|| < r for all unit vectors |e) € V. (3.1)

Equivalently, we may write |F| = \/Ile”:l{HFeH}, where the join here refers to the
lattice of real numbers and is taken over all real numbers || Fe|| such that |le|| = 1.
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Intuitively, |F| represents the maximum expansion factor that can be achieved
by applying F' to any unit vector. But note that, even if such a maximum exists,
it need not be attained, i.e., it need not be the case that ||Fe|| = |F| for some
unit |¢). Moreover, as hinted above, F need not even possess a norm when V is
infinite-dimensional. For let V' have countably infinite dimension, and consider
an orthonormal basis {e;} C V. Then for the operator defined by Fle;) = ile;),
i|F| does not exist, otherwise it would have to exceed every natural number.

On the other hand, every operator on a finite-dimensional space V" possesses
anorm. Let {e; }{_, be an orthonormal basis for V", and set { = /| =1 {[|[ Fesl| }Z1,
a fixed number. Expand an arbitrary unit vector |e) in terms of the given or-
thonormal basis as

n

ey = Zci|ei>, where Z lei]? = 1. (3.2)
i=1

i=1

The second equation in (3.2) (which follows from our assumption that ||e]] = 1)
requires that for all i, |¢;] < 1. Using this inequality, the definition of {, and the
triangle inequality, we get

1Fell = | ecFerll < 3 feil [[Fel] < n, (3.3)
i=1 i=1

so that there is indeed a fixed upper limit on how much any given operator can
expand the length of a unit vector.

With every operator on V" assigned its norm, you are invited to check that
A(V"™) is a normed space (and therefore also a metric space with the metric
induced by its norm; see section 2.1). A normed algebra A over K is a normed
space over K where the algebraic product and norm together satisfy (for all
X,V e A):

product inequality: | XY | < |X]||Y]. (3.4)

To see that A(V") also qualifies as a normed algebra, note that the product
inequality is trivial if one of the operators at issue i1s zero. Otherwise, observe
that for unit vectors such that Gle) # |0),

Ge

[1Gell

|FGe| = H |Ge|| F

‘ < |IGel| |F| < |G| F). (3.5)

whence
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IFG = \/ {IFGe|} < \/ {[|IFGel|: Gle) # |0)} < |G| F|. (3.6)
leli=1 leli=1

3.2 Operator Adjoints and *-Algebras

Let F be any operator on V". Then there exists a unique linear operator F*,
called the adjoint of F', such that

(Folw) = (v|F*w) for all |v), |w) € V" (3.7)

or, equivalently, such that the linear functionals (F'v| and (v|F* are the same
(i.e., have the same action on all |v) € V™). Of course, these claims of existence
and uniqueness require argument.

We shall dispense with existence first. For any vector |w) consider the linear
functional (w|F'. Then since every linear functional on a finite-dimensional inner
product space is a bra vector (section 2.8), there is a vector |w') € V™ such that
(w|F = {(w'|. Furthermore, |w') is obviously the only vector in V" for which
(w|F = {(w'|], since no two vectors can have the same inner product with all
vectors unless they are the same. Next, define a mapping F* : V" — V" which,
for any |w), maps |w) to the unique vector |w’) such that {(w|F = («'|. Then for

all |v) and |w),
(w|Fv) = (w'|v) = (w]|Fv) = (F*uwlv) = (Fvlw) = (v|F w). (3.8)

(The first entailment follows from the definition of ™", and the second from the
conjugate-symmetry of the inner product.) Moreover, F* is linear, because for
any vector |v) we have

(v|F* (kywy + kows)) = (Fulkywy + kaws) (3.9
= ki(Fv|w1) + ka(Fov|ws) (3.10
= k1 (v|F*w1) + k2 (v| F™ws) (3.11
= (v|k1 F wy + ko F ws). (3.12

So the linear operator F* that we have defined qualifies as an adjoint of F'.

To see that F can have at most one adjoint, we first record a general fact
about operator identities that we shall frequently invoke without comment. If
for all |v) and |w) the identity (v|Fiw) = (v|F2w) holds (or, equivalently,
(Fivjw) = (Fav|w) holds, by conjugate-symmetry of the inner product), then
the operator identity F; = F3 must also hold (because no two vectors can have
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the same inner products with all other vectors unless they are one and the same
vector). Therefore, F' can have at most one adjoint; for if it had two, F7] and
F7, then by (3.7) they would have to satisfy:

(Fv|w) = (v|Fiw) = (v|Fyw) for all |v) and |w), (3.13)

whence F; = F73,.

The matrix representation in C” of the adjoint of an operator is easily de-
termined. Recall once more that the matrix representing an operator F' relative
to an orthonormal basis has entries Fj; = (e;|Fe;). It follows that the matrix
representing F* has entries F,, because

<6Z'|F*6j> = <F6i|6j> = <6j|F6i>*. (314)

Thus, to obtain the matrix for F*, one simply ‘takes the transpose’ of the matrix
for F, i.e., reflects the matrix about its main diagonal, and then conjugates
all its entries. We could equally well have proved that every operator on V"
has an adjoint by noting that in the space of complex column matrices C”
the conjugate-transpose of an n x n matrix operator qualifies as its adjoint (via
explicitly calculating the matrix products involved in the definition of an adjoint),
and then invoking the fact that the inner product spaces C™ and V", and the
algebras of operators over them, are isomorphic.

Not only does every operator on V" have a unique adjoint, but also A(V"™)
has the structure of an ‘involutive’ algebra, or ‘*-algebra’. A *-algebra A over
K consists of an algebra A over K with an additional mapping * that assigns
to any element X € A another X* € A, called (of course) the adjoint of X,
where the operation x is anti-linear (i.e., preserves linear combinations except
for a conjugation of their coefficients) and satisfies (for all X,V € A):

X =X, (3.15)
(XY)* = V"X~ (3.16)

Note the analogy here between taking the adjoint of an operator and the con-
jugate of a complex number. However, because the complex numbers form a
commutative *-algebra (over themselves), the reversal of order in (3.16) is unim-
portant, whereas in the noncommutative algebra A(V"™) it cannot be ignored.
To establish that both (3.15) and (3.16) hold in A(V™), it suffices to note that
for all |v) and |w):

(F*v|w) = (v|F*w) = (Fv|w), (3.17)
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(V(FGQ)*w) = (FGuv|w) = (Gv|F"w) = (v|G"F*w). (3.18)

The adjoint operation also behaves reasonably towards operator norms; in
fact, it preserves them. Consider that

IFI> = \/ {IIFe|l*}, (3.19)

llell=1

= \/ {{c|F*Fe)}, (3.20)
llell=1

<\ AlIF*Fel]}, (3.21)
llell=1

= |F"F|, (3.22)

< |F*||F|, (3.23)

exploiting the Schwartz inequality in the third step, and the product inequality
in the last. It follows that |F| < |F*| and—interchanging the roles of F' and F*
throughout the argument—that |F| = |F*|. With this conclusion in hand, the
above inequalities further entail that |F*F| = |F|?. In fact the latter identity
is the stronger of the two: it is an easy exercise to show (using the product
inequality) that in any normed *-algebra where the identity |X*X| = | X|? holds,
the adjoint operation will preserve norms.

Finally, adjoints preserve tensor products. For any pair of product vectors in
Vi ® Vs, we have

(v1 @ vo|(F1 @ Fa)*v] @ vh) = ((F1 @ Fa)vy @ v2|v] @ vh),
(Frui| @ (Faval) (Jv1) @ [v3)),
F vy [v))(Fava|vs),

1| Fivy ) {va| F3us),

(v1] @ (val) (|F7v)) @ |F5v5)),
= (v1 @ va| (F] @ F3) (v} © v3)),

(
(
(
(
(
(

and this calculation suffices to establish (F; @ F3)* = F; @ F5 as an operator
identity. For the operators at issue are linear, product vectors span V; ® Vs, and
the inner product is linear and antilinear, all of which license the move from
equation (3.29) to the assertion that (v| (F; @ F2)" w) = (v|F} @ Fiw) for all
[v), w) € V1 @ Va.
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3.3 Unitary Operators and Groups

Recall that a unitary operator U on V™ is an inner product isomorphism from
V™ to itself (section 2.7). Consider, then, what the adjoint of U must be. Since
U preserves inner products,

(v|w) = (Uv|Uw) = (w|U U w) for all |v), |w), (3.30)

whence U*U = I. But since unitary operators are one-to-one and onto, they are
invertible, and we may multiply both sides of U*U = I from the right by uv!
yielding U™ = U™, Thus we see that the adjoints of unitary operators are their
inverses. Conversely, it is clear that every operator whose adjoint is its inverse
preserves inner products, and is therefore unitary. So, in fact, the assertion that
U* = U is equivalent to the statement that U is unitary.

This characterization of unitarity makes it a matter of simple algebra to show
that the set of all unitary operators in A(V"™) forms a ‘group’. A group is aset G
in which any two elements g, ¢’ € G have a product gg’ € G, where this product
operation has three properties. First, it must be associative. Second, there must
be a (necessarily unique) identity element e € G satisfying

eg=ge=cforall g €gG. (3.31)

And, third, every element ¢ € G must possess a (necessarily unique) inverse,
g~ ! € G, satisfying
gg_l = g_lg =e. (332)
For unitary operators, the group product is the algebraic product in A(V"™)
(i.e., composition of linear mappings from V" to itself). To see that the product
of two unitary operators 1s another, observe that

(UU,)" (U U,) = U3UUU, =USUT' U WU, =U;'Us =1, (3.33)

and that the inverse of U Us, ie., (U U3)™1, is just U5 UT!. We can then
multiply (3.33) on the right by (Ule)_1 and obtain (U,U,)" = (Ule)_l,
which is none other than the assertion that U U3 is itself unitary. (Exercise:
show that the tensor product of unitary operators is also unitary.) Clearly the
identity operator I must be the identity in the group of unitarity operators, and
I is indeed unitary because I* = I = I'. Finally, the inverse of a unitary
operator U is again unitary because

Uy =u"=U=U"")"" (3.34)
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3.4 Self-Adjoint Operators and Jordan-Lie Algebras

An operator F is called self~adjoint (sometimes also called ‘Hermitian’) if F =
F”. Because the adjoint of a matrix operator on C™ is obtained by reflecting
the matrix about its main diagonal and conjugating all entries (see section 3.2),
self-adjoint matrices must have real numbers along their main diagonal. And the
eigenvalues of a self-adjoint operator are always real. For let |v) be an eigenvector
of (self-adjoint) F corresponding to eigenvalue k. Then we have

(Folv) = (v|Fv) = (kv|v) = (vlkv) = k™ (v|v) = k{v|v) = k" =k. (3.35)

Evidently, any real linear combination of self-adjoint operators is self-adjoint,
but the product of two self-adjoint operators is self-adjoint if and only if they
commute. So the self-adjoint operators in A(V") form neither a real associative
algebra nor a group. However, they do form a ‘Jordan-Lie’ algebra, as do the
self-adjoint elements of any complex *-algebra. (Here, the reader may wish to
recall the definitions of a Jordan and a Lie algebra from section 1.8.) A Jordan-
Lie algebra S possesses two products o and e—the first making S a real Jordan
algebra and the second a real Lie algebra—which together satisfy, for some fixed
real number r > 0 (and all X,Y, 7 € §):

Leibniz rule: X ¢ (Yo Z) = (X eY)o 74+ Y o (X ¢ 7), (3.36)

assoclator identity: (X oY)oZ —Xo(YoZ)=r(XeZ)eY. (3.37)

What should the products o and e be for the set of all self-adjoint elements
S(A) of a complex *-algebra A? Observe that every element X € A has unique
real and imaginary parts in S(.A) given by

RX) = 1/2(X° + X), S(X) =i/2(X" - X). (3.38)

Evidently, X = R(X)+43(X) and both (X)) and S(X) are self-adjoint. (More-
over, the reader may easily verify that there are no other self-adjoint operators
A, B in terms of which X may be expressed as X = A+44B.) It is natural, then,
to define the Jordan and Lie products of two elements in S(.A) by

XoV ERXY)=1/2[X, V], XeoV & _3(XV)=—i/2[X,Y] (3.39)
(which are similar to the definitions we adopted in section 1.8). To obtain the
Leibniz rule, note that if we can establish the following special case
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Xeoe(YoV)=2(XeY)o0Y, (3.40)

then the full Leibniz rule can be derived from (3.40) by substituting ¥ + 7 for
Y and using bilinearity. Equation (3.40) is verified as follows:

2AXeY)oV = —i[X,Y]oY, (3.41)
= —i((XY)oY = (YX)oY), (3.42)
= —i/2 (XY?+YXY — (YXY + VX)), (3.43)
= —i/2[X, Y= Xe(Y oY) (3.44)

Finally, with the definitions in (3.39), the associator identity ends up reducing
to

(1—-r)(ZXY+YXZ-XZY -YZX)=0 (3.45)
which, when A is noncommutative, is satisfied if and only if » = 1. In the
commutative case, (3.45) is of course satisfied regardless of the value of r. But
if we require the associator identity to hold with » = 0, it is not difficult to
see that A4 must be commutative, so in fact the value » = 0 characterizes the
commutative case.

We end this section by observing that the (associative) algebra A(V™) has
bases that consist entirely of self-adjoint operators. Start with any orthonormal
basis {e;}/=; for V™ and consider all n? operators of the form |e;){e;|. They are
linearly independent, because for any complex coefficients ¢;; and indices k, &':

n n
> cijlei)(eil = 0= > cijlexle)(eslens) = 0= cppr = 0. (3.46)
i,7=1 i,7=1
And since the dimension of A(V") is itself n?, the operators of form |e;){e;| must
also span A(V"™). But then so must their self-adjoint real and imaginary parts;
1.e., the operators of form

Fij = R(le)(ejl), Gij = S(lea)ei]), (3.47)

span A(V") as well. Because F;; = Fj; and G;; = —Gj;, these F's and G’s are
not all linearly independent. So we can drop some of them without changing the
fact that they span A(V™). In particular, the following subset of the F’s and
G’s obviously continues to span A(V"™):

{Fij ZSJ}U{G” 1> g} (3.48)

But now there are only n? F’s and G’s left, so they must be linearly independent
as well, and hence form a basis in A(V").
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3.5 Projection Operators and Subspaces

An operator P is called a projection operator, or just a projection, if it is
both self-adjoint and idempotent, i.e., if P satisfies P? = P. For example, the
following manifestly self-adjoint matrices (in A(C?))

(0 1) ’ (—1/2 1/2 ) , and ((_1 —i)/3 1/3 ; (3.49)
are all projections because they equal their own squares. It is easy to see that an

operator P is both self-adjoint and idempotent exactly when PP* = P. Thus,
the tensor product of two projections is a again a projection because

(P, @ P3)(P1 @ Ps)” = (P @ Ps)(P] @ P3) (3.50)
= (P1P}) @ (P2P3) = P1@o P, (3.51)

The reason for their name is that projections have an important geometric
interpretation. Recall (from section 2.5) that for any subspace U C V, V =
UV U*L. We have also seen that when V is finite-dimensional, all its subspaces
will be orthoclosed, so that the operations V and + on subspaces will coincide. It
follows that, for every subspace U C V" V" = U4+ U+ and, therefore, that every
vector |v) € V" can be written uniquely as the sum of a component vector in U
and one in U+, Let the mapping Py send an arbitrary vector to its component
in U/. This mapping is clearly a linear operator—with eigenspaces U/ and U+ and
corresponding eigenvalues 1 and 0—and it is also idempotent. Moreover, Py is
self-adjoint, since for any two vectors |v) and |w) with respective components
lop), [vge) and |wy), Jwya) in U and UL, we have

(Puvjw) = (v l(|lwr) +|wys)),
= {vy|wy)+0,
= (vwlwo) + (vp L lwo),
= ((vo |+ (vp]) lww) = (v|Pyw).

Therefore Py qualifies as a projection operator.

Not only does every subspace U determine an operator Py projecting vec-
tors onto their components in that subspace, but also every projection operator
determines a subspace onto which it projects. That is, if P is a projection, then
there is always some subspace U such that P = Py, viz., the subspace given by
U = {P]|v) : |[v) € V}. To verify this claim, it suffices to show that P and Py
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agree in their action on the components |vy) and |vy L) of an arbitrary vector
|v). Since |vy) € U, there is a vector |w) such that P|w) = |vy). Thus, using the
idempotency of P,

Plvy) = P?lw) = Plw) = |voy) = Prlvr). (3.56)

And since for any |v), Plv) € U, it is clear that Py Pl|v) = Plv) for all |v),
whence Py P = P. Taking the adjoint of both sides of this latter equation, and
using the self-adjointness of both P and Py, we obtain P = P Py. Therefore,

P|UUJ_>IPPU|UUJ_>I |0>IPU|UUJ_>. (357)

Rather than saying ‘the subspace onto which P projects’; it is convenient
to refer to that subspace simply as the range of P. Due to the correspondence
between projections and subspaces, we can speak of one-dimensional projections,
two-dimensional projections, etc., referring to the dimension of their ranges. For
one-dimensional projections, we can adopt the special notation P, for the
projection onto the one-dimensional subspace generated by the vector |v). We
can also write a one-dimensional projection using ket-bra notation. Evidently,
|[v){w| maps all vectors to the one-dimensional subspace generated by |v). If we
demand that |v){w]| be self-adjoint, then we are requiring |v){w| = |w){v| which
holds only if |w) = r|v) for some nonzero real number r. Further demanding that
r|v){v| be idempotent requires that » = 1 and |v) be a unit vector. Therefore,
the projection P,y may be written in an equivalent manner as |e)(e|, where |e)
is any unit vector lying in the subspace generated by |v).

Projection operators have useful algebraic relations that reflect the relations
between their corresponding subspaces. For any subspaces U and W,

PyPyw =PwPy=0 < PU+PW:PU+W s U LW, (358)

PyPw = Puow <& [PU,P[/V]IO s Ue W (359)

Again borrowing the language of subspaces to describe projections, (3.58) licenses
us to say that projections whose product is zero are orthogonal (meaning: their
ranges are orthogonal), and (3.59) licenses us to say that commuting projections
are compatible.

The equivalences in (3.58) are no more than a special case of those in (3.59)
with U and W taken to intersect only in the zero subspace. We therefore fo-
cus our efforts on proving (3.59), for which it suffices to establish the chain of
implications:
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PyPw = Pyaw = [PU,PW]IO = U+ W = PyPw = Pyaw. (360)

So here goes. If Py Py = Pyaw then since Pyaw is self-adjoint, so is Py Py,
which means Py and Py have to commute. Next, assume they commute. Simple
algebra then reveals that all three of the operators Px, Py, and Py given by

Px =Py — PyPy, Py =Py — PyPy, P;=PyPy, (3.61)

are projections, and that the product of any two of them is the zero projection. It
follows that the subspaces X, Y, and 7 are mutually orthogonal. For let |x) € X
and |z) € Z. Then Px|z) = |z) and Pz|z) = |z}, so that

(x|z) =(Pxx|Pgzz) = {(¢|PxPgzz) = 0, (3.62)

and similar statements obviously hold for X and Y, and for Y and Z. Moreover,
Py = Px + Pz and Py = Py + Pz (from (3.61)), so that U = X + 7 and
W =Y + Z, because for any |u) € U,

|u) = Pylu) = Px|u)+ Pzlu) € X + 7, (3.63)
and for any |z) € X and |z) € 7,
) +|2) = Px|e) + Pz|z) = Pu(lz) + |2)) € U (3.64)

(and, similarly, for the claim that W =Y + 7). But then U < W. Finally, sup-
posing that U and W are compatible, there are mutually orthogonal subspaces
X, Y, and Z such that U = X + 7 and W = Y + Z. Since orthogonal subspaces
are compatible, we can use distributivity to obtain U NW = Z| and all we need
to show now is that Pz = Py Py . This may be shown simply by expanding an
arbitrary vector |v) as |vx) 4 |vy) + |vg) + |v'), where |¢') is the component of
|v) in the subspace orthogonal to all three of X, Y, and 7, and then observing
that Py Pw maps |v) to |vz), just as Pz does.

Since projections are another way of talking about subspaces, one sometimes
refers to £ ,(V") as the orthomodular lattice of projections on V. We leave
the reader to verify that the partial ordering and lattice operations in £ _(V"),
thus understand, can be expressed as follows:

PUSPW <~ PW_PUIPU, (365)
Py ANPw = Puaw, (3.66)
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Py VvV Pw = Pyw, (367)
Py = 1-Py. (3.68)

It follows from (3.58) and (3.67) that the join of orthogonal projections is simply
their sum, and from (3.59) and (3.66) that the meet of compatible projections is
their product. Observe, also, that the greatest element in £, (V") is Py~ = I,
the least is Py = 0, and that orthomodularity is now just the trivial assertion
that

PW_PUIPU:>PWIPU—|—P[/V(I—PU). (369)

3.6 Normal Operators and The Spectral Theorem

In light of (3.58), any m-dimensional projection Py on V™ (m > 1) can be writ-
ten as a sum of (necessarily, lower-dimensional) mutually orthogonal projections
with ranges that together span U. Any set of mutually orthogonal (nonzero)
projections that sum to the identity projection I (projecting onto the whole
of V") is called a resolution of the identity. For example, if {e;}7; is any
orthonormal basis, then

I= Z les){ei] (3.70)

is a resolution of the identity into one-dimensional projections.
Given any resolution of the identity {P;}, (m < n) on V", we can build a
self-adjoint operator, F, by choosing a set {r;}, of distinct real numbers and

defining
F=) nrP,. (3.71)
i=1

F is manifestly self-adjoint (because its coefficients are real and projections are
themselves self-adjoint), and the numbers {r; }2, are its eigenvalues. That every
self-adjoint operator on V" can be expanded uniquely in the above way—i.e.,
as a linear combination, with distinct real coefficients, of projections in some
resolution of the identity—is a consequence of the spectral theorem.

In fact, the most general class of operators to which the spectral theorem
applies are the ‘normal’ operators. An operator IN on V" is called normal if it
commutes with its adjoint,i.e., NIN* = N*N. (The reader might find it amusing
to show that this condition is equivalent to [R(IN), S(IN)] = 0.) Evidently self-
adjoint operators (including projections) are normal, as are unitary operators.
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The only fact we need about normal operators to prove the spectral theorem is
the claim that: |v) is an eigenvector of N corresponding to eigenvalue ¢ if and
only if |v) is an eigenvector of N* corresponding to eigenvalue ¢*. The argument
for this claim is straightforward. Observe that if N is normal, (Nv|Nv) =
(N*v|N™v), and therefore, taking square roots, |[|[Nv|]| = ||[N*v||. Now given
that IV is normal, the operator N — c¢I, with adjoint N™ — ¢*I, is also normal.
The claim then follows immediately from

(N = eI)v|| = |(N" = " I)u]] (3.72)

using the positive-definiteness of norms.

We are now ready to prove the spectral theorem. Fix an arbitrary normal op-
erator IN on V. Since the assumption throughout this chapter has been that V"
is complex, every operator on V™ has at least one eigenvector (by the argument
in section 1.9). So N must have an eigenvector |v) € V™ with corresponding
eigenvalue ¢;. Let P; = Py, be the projection onto the ¢j-eigenspace of IN|
and consider the subspace Uit. This subspace is invariant under IV, meaning
that the action of N on any |u) € Ui+ produces another vector lying within the
subspace Uit. The invariance of Ui+ under N follows from the fact that for any
|v> € U1,

(v|Nu) = (N*v|u) = (c]v|u) = c1{v|u) = 0, (3.73)

using the claim of the previous paragraph in the second step. Since IN leaves U
invariant, the restriction of the mapping IN to Uit is a normal operator on the
(finite-dimensional) complex inner product space Ui-. We may therefore repeat
exactly the same argument within that space starting again with the observation
that N must have an eigenvector within Uit and corresponding eigenvalue cq (#
c1). Again, let Py = Py, be the projection onto the cs-eigenspace of N in Ui
and look at the subspace (U; +Us)L. This subspace is again left invariant under
N, and therefore must contain another of its eigenspaces, etc. Since V" is n-
dimensional, this argument must terminate after m < n iterations (at the point
where (U +Usz +- - -+ Upy,)* is the zero subspace) leaving us with a resolution of
the identity {P;}7,, consisting of projections onto all the different eigenspaces of
N, and a set of distinct complex numbers {¢;}72,, the corresponding eigenvalues.
We now claim, first, that IV may be expanded as

N=> oP;, (3.74)
i=1
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and, second, that there is no other resolution of the identity and no other set of
distinct complex numbers in terms of which IN may be so expanded.

For the first claim, note that for any |v) € V", P;|v) lies in the ¢;-eigenspace
of N, so that N (P;|v)) = ¢;(P;|v)). Therefore, for any |v) € V",

Nlv)=NIjv)=N (Z Pi) |v) (3.75)
= inim (3.76)

= ZciPi|v> = (Z ciPi) |v). (3.77)

i=1

For the second claim (of uniqueness), suppose there were another way to expand
N as

N =) P (3.78)
j=1
with { P’ }5”211 a resolution of the identity and {c} }5”211 a set of distinct complex

numbers. For any index k and any |vg) in the range of P}, we see that

i i

N|vk> = ZCJ’PHU’» = chéjk|vk> = ck|vk>, (379)
j=1 j=1

so that the numbers {c"7 5”211 must be a subset of the eigenvalues of V| i.e., a
subset of {¢;}" ,, and, moreover, each P} must have a range lying within some
eigenspace of IN. But the range of Pj, cannot be a proper subspace of the range
of some P;—for then there would be some nonzero vector in that range that P,
mapped to zero, contradicting the fact that {P‘/7 5”211 provides a resolution of the
identity (and that I never maps a nonzero vector to zero). It follows that each
P}, actually equals some P;, and, furthermore, that the resolution of the identity
{P! }5”211 must coincide with the resolution of the identity {P;}72,. In particular,

we must have m = m/. But we have already seen that {c} 5”211 CH{ei},. So,in

fact, it must be the case that {63}5”211 = e}, and the proof of uniqueness is
complete.
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The expansion (3.74) of a normal operator N in terms of a unique linear
combination of projection operators in a resolution of the identity, with the
different eigenvalues of the normal operator as coefficients, is called the spectral
decomposition of V. The projection operators in the resolution of identity are
called the spectral projections, or eigenprojections, of V.

We can learn alot about normal operators through their spectral decompo-
sitions. For example, we have already learned that the eigenspaces of a normal
operator IN are mutually orthogonal and span V™. So, in particular, choosing an
orthonormal basis within each eigenspace of IN and taking the union of all the
choices, we obtain an orthonormal basis for V" consisting entirely of eigenvectors
of N, called an eigenbasis for IN. Thus every vector in V™ can be expanded in
terms of eigenvectors of any normal operator.

In the case of a self-adjoint operator, we can immediately infer from the
uniqueness of its spectral decomposition that all its eigenvalues must be real
(which, of course, we already knew). And we can infer from the following simple
computation (and the uniqueness of the spectral resolution of the identity oper-
ator itself) that any eigenvalue ¢; of a unitary operator U must satisfy |c;|? = 1:

I= UU* = (i CiPi) ic;P; ; (380)
ji=1

i=1
i,7=1
= Z cic;éiij = Z|Cz|2P2 (382)

i,7=1 i=1

Finally, if we take the tensor product of two normal operators, insert their
spectral decompositions, and expand the result using bilinearity of ®, 1i.e.,

1
m,m

Ni®@Ny=» aPi@) diPi=Y" c¢diP;io P}, (3.83)
i=1 =1 1,j=1

then the resulting product decomposition will be the spectral decomposition for
N, ® Ny (itself normal) if and only if the products {clc"y}:’fj’g are all distinct.
So one could start with factor operators with no degeneracy, and yet their ten-
sor product might turn out to be highly degenerate depending upon what the
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products of their eigenvalues are. The moral is that the eigenspaces of the prod-
uct of two normal operators are not generally given by tensor products of the
eigenspaces of its factor operators.

3.7 Commuting and Compatible Self-Adjoint Operators

Two self-adjoint operators commute if and only if all their spectral projections
commute with each other. For let the two operators be F and G, with spectral
decompositions

F=) rnPiand G=) r;Pj. (3.84)
i=1 j=1

Clearly, then, assuming that all the eigenprojections above commute with each
other, the fact that F and G are simply linear combinations thereof entails
[F,G] = 0. For the converse, fix an arbitrary ¢ and consider any vector |v;) in
the range of P;, i.e., any eigenvector in the r;-eigenspace of F'. Since [F, G] = 0,
we have

F|vZ> = 7°Z'|UZ'> = GF|UZ> = 7°Z'G|UZ'> = F(G|vl>) = TZ(G|UZ>) (385)

which shows that the r;-eigenspace of F' is invariant under G. It follows that for
any |[v) € V", P;GP;|v) = GP;|v) since P;|v), and therefore GP;|v), lies in the
range of P;. So we have P,GP; = GP;, and taking adjoints of both sides, we
also have P;GP; = P;G. Together these equalities establish that [P;, G] = 0.
Now just rerun this entire argument with G playing the role of F' and P; the
role of G. The conclusion is that [P;, P;] = 0 for arbitrary j, so all the spectral
projections of F' and G indeed commute, as promised.

Next, suppose we are given any finite collection of self-adjoint operators. Then
they will mutually commute if and only if they share an eigenbasis. Suppose, first,
that self-adjoint operators A, B, C etc. have a common eigenbasis. For any two
of these operators, say B and C, obviously the action of the commutator [B, C]
on any vector in the shared eigenbasis will yield |0). So, since every vector in the
space is a linear combination of basis vectors, [B, C] = 0. Conversely, suppose
that self-adjoint A, B, C, etc. mutually commute. Let their eigenprojections
be given by {P;}i9, {P ;»n:ﬂl, {P}/},2,, etc. and consider the set of products
(focussing only on the ones that are nonzero):

(P,pipy...} T e (3.86)

igk,..=1
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Since A, B, C, etc. commute, so do all their eigenprojections (by the previous
paragraph’s argument), so that each product of projections in the set above is
itself a projection. Moreover, since each operator’s eigenprojections resolve the
identity, the set of product projections above does so as well (verify!). But the
range of PZ'P}PZ -+ 1s contained within A’s ith eigenspace, B’s jth eigenspace,
etc. Therefore, there 1s a set of mutually orthogonal subspaces spanning V" each
of which contains simultaneous eigenvectors for all of A, B, C, etc. To obtain
a common eigenbasis, simply select an orthonormal basis within each of these
subspaces and take the union of all the selections.

You should convince yourself of the following corollary to the result we have
just established: commuting self-adjoint operators share a common eigenbasis
if and only if they can be simultaneously diagonalized, i.e., when there is
an orthonormal basis relative to which the matrix representations for all the
operators assume a diagonal form (with zero entries off the main diagonal).
If there is a unique basis that simultaneously diagonalizes a set of commuting
self-adjoint operators, or equivalently, if the set shares but a single eigenbasis,
then it is called complete. For example, any resolution of the identity into one-
dimensional projections is a complete commuting set of self-adjoint operators.

To introduce the notion of compatible self-adjoint operators, we first need to
discuss functions of a self-adjoint operator. Consider any real-valued polynomial
function on the real line:

p(x) = ane” +ap_12" P+ Fagxt + ao. (3.87)

Since the operators on V" are an algebra, we may form the corresponding
operator-valued polynomial function of any self-adjoint operator F € A(V"):

p(F)=a,F" +an, 1 F" '+ 4 a0, F' 4 aol. (3.88)

Inserting F’s spectral decomposition Y .-, r;P; in place of F in (3.88) and
simplifying yields
p(F) = p(ri)Pi. (3.89)

i=1

Thus a polynomial function of a self-adjoint operator F' has identically the same
eigenprojections as F'| and its eigenvalues are just the corresponding polynomial
functions of the eigenvalues of F'.
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(3.89) motivates defining f(F'), where f is any real-valued function on the

real line, to be
m

FE)E N )P (3.90)
i=1
However, since the operators we are considering in this chapter possess only
finitely many eigenvalues, any operator that is a function of F in the more
general sense of (3.90) is always some polynomial function of F. For, given any
self-adjoint F' and function f, we can construct out of the (distinct) eigenvalues
of F the (well-defined) polynomial

S e O

i = 1) (= rim)(ri = rig) (=T

Because the ¢th term in this summation takes the value §;; f(r;) when z = r;, p
agrees with f in its action on all the eigenvalues of F'| which agreement suffices
for p(F) = J(F).

As an example of a frequently invoked function of a self-adjoint operator F,
consider the sum of the spectral projections of F' that correspond to some subset
A of its eigenvalues:

Pr= Y P (3.92)
{i:r;€A}
This sum 1s itself a projection, whose range coincides with the span of the
eigenspaces corresponding to the values in A. It i1s easy to see that Pa is a
characteristic function xya of F, where xa 1s defined by

itz €A,
Xa(e) = { 0if e ¢ A. (3.93)

In particular, the spectral projections of F themselves are all (particular) char-
acteristic functions of F'.

A set of self-adjoint operators is called jointly compatible if there is some
self-adjoint operator that they are all a function of. When the self-adjoint op-
erators are projections, and there are just two of them, this coincides with our
previous definition of compatibility between projections (section 2.6). For if two
projections are compatible, they have compatible ranges U and W that satisfy
U =A+B and W = A+ for some mutually orthogonal subspaces A, B, and C'.
We can then choose a self-adjoint operator F' that has A, B, and C' amongst its
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eigenspaces and write the projections onto U and W as characteristic functions
of F. Conversely, if two projections are both functions of a single self-adjoint
operator, then obviously they must commute, and ipso facto be compatible (cf.
(3.59)).

Just as compatibility and commutativity of projections come down to the
same thing, so also for self-adjoint operators generally. Obviously any set of
jointly compatible self-adjoint operators must commute in virtue of [their] all
being functions of a single self-adjoint operator. Conversely, suppose self-adjoint
A, B, C, etc. mutually commute. Then there is an orthonormal basis {e; }7,
with respect to which they can be simultaneously diagonalized. If a; is the eigen-
value of A corresponding to |e;), and similarly for b; and B, ¢; and C, etc., then
it 1s clear that these operators can be written as

n

A= alee], B=Y bile)eil, €= cilei)eil, ete. (3.94)
i=1 i=1

i=1

(which are not necessarily their spectral decompositions, since they may be de-
generate). To obtain a self-adjoint operator of which A, B, C, etc. are all a
function, just pick an operator F with spectral decomposition:

F= Zri|ei><ei|. (3.95)

Because the r;’s are all distinct, there exist well-defined functions f, ¢, h, etc.
satisfying, for all i:

f(rl) = a;, g(ri) = b, h(rl) = ¢;, etc., (396)
from which it is evident that A = f(F), B = g(F), C = h(F), etc. as desired.

Notes and References

Clear and nearly exhaustive treatments of finite-dimensional vector spaces can
be found in Lipschutz (1968) and Halmos (1948). Section 1.6’s proof that £
has uncountable dimension was communicated to us by John L. Bell. For con-
cise and fairly general discussions of arbitrary vector spaces, associative, and Lie
algebras—including exercises and applications to modern physics—see Chs. 9-23
in Geroch (1985). MacLane and Birkhoff (1979) is a classic text on algebras. Jor-
dan algebras were first introduced by one of the co-founders of quantum theory,
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Pascual Jordan (1932), with the axiomatization of the theory in mind. Shortly
thereafter, Jordan’s collaboration with von Neumann and Wigner (1934) pro-
duced a characterization of a large class of finite-dimensional Jordan algebras,
and the literature on Jordan algebras is now voluminous (e.g., see Jacobson
(1968)). There are also numerous sources for lattice theory, though Birkhoff’s
(1967) is probably the bible. The term ‘entangled’ was originally coined by
Schrodinger.



